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Abstract

I study contributions to a public good when contributions exhibit network effects.
Network effects make the problem a coordination game with multiple Nash equilibria
and open the door to coordination failures. I make two contributions. First, using the
methodology of global games, I show how uncertainty about payoff functions facilitates
selection of a unique equilibrium. Coordination failure occurs in well-identified cases.
Second, I design a policy of network subsidies that corrects the entire externality deriving
from network effects but does not, in equilibrium, cost the policymaker anything. I apply
the model to climate change mitigation and the adoption of renewable technologies.

1 Introduction

Economic theory predicts that private agents will underprovide public goods. However, this
canonical result breaks down when the private benefits of the public good depend upon the
network of other users (Katz and Shapiro, 1985). In such case, the agents face a coordination
problem and provision can be an equilibrium of the implied coordination game. But provision
is still not guaranteed as coordination games tend to have multiple equilibria. Two questions
therefore arise. First, is it possible to identify conditions under which the good will be
provided? And second, what does an optimal policy to guarantee provision look like? This
paper provides a general answer to these questions. My results can be applied to contexts such
as information technology adoption in developing economies (Jensen, 2007; Björkegren, 2019)
or efforts toward disease eradication (Barrett, 2003). For concreteness and relevance, I focus
on the example of climate change mitigation through the adoption of renewable technologies.

There are at least two channels through which network effects and other strategic comple-
mentarities (Bulow et al., 1985) could arise in the context of renewables adoption. Direct
spillovers occur if the use of renewables is directly beneficial for all other agents who also
use renewables. Examples would be knowledge spillovers (Aghion and Jaravel, 2015; Aghion
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et al., 2016), network externalities (Barrett and Dannenberg, 2017), and – in a dynamic
environment – learning-by-doing (Acemoglu et al., 2012; Van der Meijden and Smulders,
2017; Hart, 2019). Alternatively, there may be indirect spillovers in two-sided markets. These
arise if the use of renewables stimulates some external factor which in turn make the use
of renewables more attractive; the markets for electric vehicles and charching stations are
typical examples (Li et al., 2017).

Strategic complementarities complicate the analysis of models of renewables adoption
– and indeed of discrete public good provision generally – because they turn the decision
problem into a coordination game. It is well known that coordination games tend to have
multiple Nash equilibria, which raises questions about equilibrium selection and opens the
door to coordination failures. This paper takes stock of both these issues.

My first contribution addresses equilibrium selection explicitly. I use the machinery of
global games, first developed by Carlsson and Van Damme (1993), to show how uncertainty
can help select a unique equilibrium. In well-identified cases, the unique equilibrium is
inefficient. Somewhat paradoxically, rational players may maximize their expected payoffs
by coordinating on an outcome (e.g. the large-scale use of fossil fuels) that is known to be
inefficient. This dismal prediction is a consequence of strategic uncertainty – uncertainty
that derives from players’ need to second-guess each other’s actions – and motivates policy
intervention.

My second contribution is the design of an efficient policy that preempts coordination
failure. The policy, called network subsidies, corrects the entire externality from technological
spillovers but does not, in equilibrium, cost the policymaker anything. In contrast to standard
subsidies, the amount of network subsidy a player receives is contingent not only on their
own action but also on the actions pursued by all others. A policymaker can exploit this
degree of freedom to offer a subsidy scheme that solves the coordination problem without
requiring any payments to be made.

I derive these results in a bare-bones model of technological choices. Players choose
between fossil fuels or a renewable technology. Associated with players’ choices are two
externalities. The first is an environmental benefit which says that the use of renewables,
rather than fossil fuels, benefits the environment and therefore everyone. The second is
a network externality deriving from strategic complementarities in individual actions; one
could think of technological spillovers. These externalities combined imply that players face
a coordination problem with the possibility of multiple Pareto-ranked equilibria. The two
externalities also imply that whenever multiple equilibria exist, coordination on renewables is
efficient.

The global game adds scientific uncertainty about the environmental benefit from adopting
renewables to the strategic uncertainty inherent to any coordination problem. From a known
prior, Nature draws a true benefit b which the players do not observe. Instead, each player
i receives a private noisy signal bεi = b + εi of b, where εi is the error term in player i’s
observation. A strategy for player i is then a function that assigns to any signal bεi a probability
with which the player chooses renewables; a strategy vector is a vector of strategies for all
players. I assume that the support of bεi contains dominance regions: for sufficiently high
[low] signals bεi , using renewables [fossil fuels] is strictly dominant. This, together with some
technical assumptions, allows me to show that there is a unique strategy vector that survives
iterated elimination of strictly dominated strategies. It follows that the global game has a
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unique Bayesian Nash equilibrium.
How does adding uncertainty simplify the outcome of a game? The core of the argument is

that, in the global game, a player must make probabilistic inferences about the signals received
by other players. Consider then the case in which a player receives a signal just below the
strict dominance threshold for renewables. Because their signal is close to a dominance region,
the player assigns a strictly positive probability to the event that any of the other players
received a signal in the dominance region; those players will definitely adopt renewables.
This implies that the player, though their own beliefs would not exclude either technology
per se, is forced to bound from above the probability that any other player chooses fossil
fuels. Combined with the incentive to coordinate, those bounds tend to make renewables
more attractive; each player can therefore extend the dominance region for renewables (and
the same is true, starting from low signals, for fossil fuels). But we cannot stop here: having
extended the dominance regions once, we can repeat the argument and must continue doing
so indefinitely.1 My first main result shows that this process of extending dominance regions
for both technologies stops only when their boundaries touch.

It is immediate from the argument that the equilibrium selected is inefficient: by extending
the strict dominance region for fossil fuels, coordination on renewables is preempted (with
probability 1) for a range of games in which, under complete information, coordination on
renewables would be an equilibrium. This motivates policy intervention. I study subsidies.

In particular, I study network subsidies. Network subsidies are a novel kind of policy that
allow the policymaker to correct the entire externality deriving from technological spillovers
but does not, in equilibrium, cost the policymaker anything. In contrast to regular subsidies,
the amount of network subsidy each player is entitled to depends not only on their own
action but also on the actions of all other players. I show that such a policy design allows to
policymaker to implement the efficient equilibrium of the (underlying) coordination game
in strictly dominant strategies. While the policy is costless in equilibrium, off equilibrium
spending can be positive. To accomodate this, I also design a self-financed network tax-
subsisdy scheme that is always ex post budget neutral. Lastly, an alternative – though
essentially equivalent – policy to network subsidies for two-sided markets characterized by
indirect spillovers is also discussed.

Related literature. The coordination problem has long been recognized in the context
of renewables adoption. While I treat spillovers abstractly, economists have discussed a
number of factors from which such strategic complementarities could arise. These include
(indirect) pure network effects (Katz and Shapiro, 1985; Greaker and Midttømme, 2016; Li
et al., 2017), spillovers from R&D in “breakthrough” technologies (Barrett, 2006; Hoel and
de Zeeuw, 2010), the existence of climate tipping points (Barrett and Dannenberg, 2017),
political economy arguments such as climate clubs (Nordhaus, 2015, 2021), technological and
knowledge spillovers (Fischer and Newell, 2008; Acemoglu et al., 2012; Aghion and Jaravel,
2015; Aghion et al., 2016; Harstad, 2016; Hart, 2019; Harstad, 2020), or even behavioral
economic mechanisms such as social norms (Allcott, 2011) and reciprocity (Nyborg, 2018).

Mindful of the complications deriving from coordination incentives and equilibrium
multiplicity, the profession has sought to address equilibrium selection in different ways.

1Interestingly, this kind of infection argument is also found outside the realm of game theoretic models;
see for example Krugman (1991) for an application to target zones for exchange rates.
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Two approaches are predominant. One from the outset restricts attention to a particular
kind of equilibrium. Thus, players may be a priori assumed to pursue symmetric strategies
(Harstad, 2012; Harstad et al., 2019) or to coordinate on the Pareto dominant outcome
(Barrett, 2006; Hoel and de Zeeuw, 2010).2 Another approach treats the coordination problem
as theoretically indecisive and relies on laboratory experiments to make predictions (Barrett
and Dannenberg, 2012, 2014, 2017; Calzolari et al., 2018). I complement these approaches
in using global games to show how uncertainty about the technologies leads to equilibrium
selection without the need for additional restrictions on players’ strategies or beliefs.

Subsidies to stimulate the use of renewable technologies are much discussed in the literature,
for recommended examples see Joskow (2011), Murray et al. (2014), Allcott et al. (2015),
Fowlie et al. (2015), Acemoglu et al. (2016), Borenstein (2017), Li et al. (2017), De Groote
and Verboven (2019), Hart (2019), and Harstad (2020). My design of network subsidies
complements this literature by designing a policy that stimulate renewables with different
and – arguably – more desirable properties than the subsidies heretofore studied.

Network subsidies are also related to the literature on directed technical change and the
environment (Acemoglu et al., 2012; Aghion and Jaravel, 2015; Aghion et al., 2016; Acemoglu
et al., 2016; Hart, 2019). This literature studies the effect of policy on technology adoption
when multiple and (partially) substituable technologies co-exist with differental consequences
for social welfare, the environment, and growth. Technologies are typically characterized as
either clean or dirty and assumed to exhibit technology-specific positive spillovers, with the
dirty technology starting off as more advanced. This literature asks how different kinds of
policies – e.g. a carbon tax or R&D subsidies – can be used most efficiently to stimulate
large-scale adoption of the clean technology. My contribution to this literature is to show how
R&D subsidies, aimed at correcting the externality that derived from spillovers and other
strategic comeplementarities in renewable investment, can be made substantially cheaper.

The derivation of network subsidies is also an exercise in mechanism design and imple-
mentation theory. The policymaker aims design a subsidy that makes coordination on the
efficient outcome of the game a strictly dominant strategy for all players (Laffont and Maskin,
1982; Myerson and Satterthwaite, 1983). While mechanism design was applied to emissions
mitigation before (Duggan and Roberts, 2002; Ambec and Ehlers, 2016; Martimort and
Sand-Zantman, 2016), the focus has mostly been on policies to solve the free-rider problem.
I complement this approach by designing policies that solve the coordination problem.

2 Basic Model

There are N players. Each player chooses between two goods, 0 and 1. Let xi ∈ {0, 1} denote
the good used by player i. If player i uses good 1, this gives a benefit b > 0 to every player.
Note that choosing 1 generates an externality in the amount b · (N − 1) > 0; hence, the use
of good 1 is a discrete public good.3 Let x = (x1, x2, ..., xN) denote the vector of actions

2In addition, uniqueness of the equilibrium may be proven within the restricted strategy set.
3In some branches of the literature, the term “discrete public good” is used to describe public goods

that are provided in some fixed quantity if and only if a minimum contribution threshold is reacher, see
for example Palfrey and Rosenthal (1984), Nitzan and Romano (1990), and McBride (2006). This paper
uses the term discrete public good for any situation in which each player faces the discrete choice between
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played by all players, and let x−i = (xj)j ̸=i be the vector of actions by all players but i. Let
1 = (1, 1, ..., 1) be the action vector of all ones, and 0 = (0, 0, ..., 0) the action vector of all
zeroes. The cost of using 0 is d, a constant. The costs of playing 1 instead depends upon
the total number of players, n, that play 1 and are decreasing in n: c(1) > c(2) > ... > c(N).
That is, the public good is also a network good (Katz and Shapiro, 1985) and the game
exhibits strategic complementarities (Bulow et al., 1985). It is assumed that c(N) > d.4 Note
that, besides the social benefit b from using good 1, there may also be a private benefit to
using either good; these benefits are henceforth considered subsumed by the cost function
c(n).

Combining these elements, the payoff to player i is:

πi(x | b) =

{
b · n(x)− d if xi = 0

b · n(x)− c(n(x)) if xi = 1
, (1)

where n(x) is defined as the total number of players using good 1 in x; n(x) =
∑N

i=1 xi. I
define n(x−i) =

∑
j ̸=i xj to be the total number of players other than i that play 1 in x.

The set of players {1, 2, ..., N}, the set of action vectors x ∈ {0, 1}N , and the set of payoff
functions {πi} jointly define a complete information game G(b).5 I write G(b) for the game
of complete information (i.e. with common knowledge of b) to differentiate this game from
the global game studied in Section 3 where players do not observe b. The choice of b as key
parameter is made for convenience; one could choose other parameters instead.

It will prove convenient to analyze the game in terms of a gain function. The gain from
usinng good 1, rather than good 0, to player i (given b and x−i) is the difference in their
payoffs between playing xi = 1 and xi = 0. For given x−i, define the gain function ∆i as

∆i(x−i | b) = πi(1, x−i | b)− πi(0, x−i | b)
= b+ d− c(n(x−i) + 1).

(2)

Moreover, if k = n(x−i) I write ∆i(k | b) = ∆i(x−i | b).
The action xi = 1 is strictly dominant for all b > c(1) − d as for those bs it holds that

∆i(x−i | b) > 0 for all x−i. Alternatively, xi = 0 is strictly dominant for all b < c(N)− d. In
between, the game has multiple equilibria. To smoothen notation, I shall henceforth write
b̄ = c(N)−d

N
. This dominance argument, combined with direct payoff comparisons, yields

Proposition 1.

Proposition 1.

(i) x = 1 is a Nash equilibrium of the game for all b ≥ c(N)− d. It is the unique Nash
equilibrium for all b > c(1)− d.

contributing, and not contributing, to the public good.
4This assumption is of no technical importance for the analysis; it buys me the convenience of not having

to discuss separately the cases where d < c(N) and d > c(N) in the welfare analysis.
5The payoff function (1) is extremely simple and one may wonder whether the results derived in this paper

are due to its particular specification. Under some additional assumptions, an implication of Frankel et al.
(2003) is that the results on equilibrium selection in the global game (Section 3) hold true more generally, see
also the discussion following Theorem 1. A substantial theoretical generalization of my results on network
subsidies (Section 4) is provided in ongoing work by Heijmans & Suetens.
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(ii) x = 0 is a Nash equilibrium of the game for all b ≤ c(1) − d. It is the unique Nash
equilibrium for all b < c(N)− d.

(iii) x = 1 is strictly Pareto dominant for all b > b̄.

If the social benefit from using good 1 exceeds the cost of using it, but the private benefits
do not, then no player chooses 1 and one obtains the usual result that the public good gets
underprovided. Similarly, if the private benefits from using good 1 are very high, the public
good will be efficiently provided. Finally, when the benefit from using good 1 is moderately
high, both coordination on using 1 and coordination on using 0 are Nash equilibria of the
game. In this case, the players face a true coordination problem and the outcome of the
game cannot be a priori predicted. The public good may or may not be provided as either
outcome is an equilibrium.

Frankel et al. (2003) have observed that a game such as given by (1) is a potential game
(Monderer and Shapley, 1996). A game in which each player has two actions is a potential
game if there exists a potential function P : {0, 1}N → R on action profiles such that the
change in any player’s payoff when switching from one action to the other is always equal to
the change in the potential function; that is, for which there exists a function P such that
P (xi, x−i | b)−P (1− xi, x−i | b) = πi(xi, x−i | b)− πi(1− xi, x−i | b) for all i. The game G(b)
admits a potential function P (x | b) given by:

P (x | b) =

{∑n(x)−1
k=0 ∆i(k | b) if n(x) > 0,

0 if n(x) = 0.
(3)

Observe that, for any i and any x−i ∈ {0, 1}N−1, it holds that P (1, x−i | b)− P (0, x−i | b) =
∆i(x−i | b) = πi(1, x−i | b)− πi(0, x−i | b), confirming that P is a potential function indeed.6

A potential maximizer is a vector x that maximizes P . One can verify that 1 is the unique
potential maximizer of P (x | b) for all b+ d >

∑N
n=1

c(n)
N

whereas 0 is the unique potential

maximizer of P (x | b) for all b + d <
∑N

n=1
c(n)
N

. I return to this observation in the next
section.

The presentation so far was technical. It relates to global warming as follows. Climate
change mitigation requires large-scale reductions in the amount of greenhouse gases emitted
into the atmosphere; to realize the necessary deep cuts in emissions, a coordinated switch to
renewable technologies – and away from fossil fuels – is needed.

The use of renewables is hence good for the environment. Because improvements in
environmental quality are beneficial for everyone, the player who uses renewables also
provides a public good. It follows that good 1 can be thought of as a renewable technology;
good 0, instead, is a fossil fuel technology. The problem of the players is then to decide which
of the two technologies to use or, perhaps more realistically, whether to switch to renewables
or not.

There are two externalities associated with using renewables. The first is an environmental
externality and is captured by the parameter b – think of the benefits from reduced CO2
emissions. The second is a network externality and relates to the cost function c, i.e. it

6If n(x) > 1, the confirmation is as in the text. If, however, n(x) = 1, then one has P (1, x−i | b)−P (0, x−i |
b) =

∑0
k=0 ∆i(k | b)− 0 = ∆i(x−i | b) = πi(1, x−i | b)− πi(0, x−i | b), as desired.
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captures the fact that a player’s use of renwwables lowers the cost of renewables for all other
players, be it through direct or indirect spillovers. The structure of multiple externalities
deriving from the use of renewables is common in the literature on technological change and
the environment (c.f. Acemoglu et al., 2012; Aghion and Jaravel, 2015; Acemoglu et al., 2016;
Hart, 2019; Harstad, 2020).

3 The Global Climate Game

Coordination incentives drive equilibrium multiplicity under common knowledge of b. But
the assumption of complete information is strong. There are large numbers of uncertainties
surrounding many clean technologies’s present or future potential.

Uncertainty and signals. For these reasons, I turn the problem into a global game. In the
global game Gε, the true parameter b is unobserved. Rather, it is assumed that b is drawn
from the uniform distribution on [B,B] where B < c(N)− d and B > c(1)− d and that each
player i receives a private noisy signal bεi of b, given by:7

bεi = b+ εi. (4)

The term εi captures idiosyncratic noise in i’s private signal. It is common knowledge that
εi is an i.i.d. draw from the uniform distribution on [−ε, ε]. I assume that ε is sufficiently
small: 2ε < min{c(N) − d − B,B − c(1) + d}. Let bε = (bεi ) denote the vector of signals
received by all players, and let bε−i denote the vector of signals received by all players but j,
i.e. bε−i = (bεj)j ̸=i. Note that player i observes bεi but neither b nor b

ε
−i. I write Φε(· | bεi ) for

the joint probability function of (b, bεj)j ̸=i conditional on bεi .
The timing of Gε is as follow. First, Nature draws a true b. Second, each player i receives

its private signal bεi of b. Third, all players simultaneously choose their actions. And finally,
payoffs are realized according to the true b and the actions chosen by all players. In what
follows I take ε > 0 as given and introduce the concepts used to analyze the global game Gε.

Strategies and strict dominance. Player i receives a signal bεi prior to choosing an action.
A strategy pi for player i in Gε is a function that assigns to any bεi ∈ [B − ε, B + ε] a
probability pi(b

ε
i ) ≥ 0 with which the player chooses action xi = 1 when they observe bεi . I

write p = (p1, p2, ..., pN) for a strategy vector. Similarly, I write p−i = (pj)j ̸=i for the vector
of strategies for all players but i. Conditional on the strategy vector p−i and a private signal
bεi , the expected gain (of choosing xi = 1 rather than xi = 0) to player i is given by:

∆ε
i (p−i | bεi ) =

∫
∆i(p−i(b

ε
−i) | b) dΦε(b, bε−i | bεi ). (5)

I say that the action xi = 1 is strictly dominant at bεi if ∆
ε
i (p−i | bεi ) > 0 for all p−i. Similarly,

the action xi = 0 is strictly dominant (in the global game Gε) at bεi if ∆
ε
i (p−i | bεi ) < 0 for all

p−i. When xi = x is strictly dominant, I say that xi = 1− x is strictly dominated.

7In game theory, it is assumed that the game (in this case Gε) is common knowledge; hence, the structure
of the uncertainty (the joint distrubution of b and all the signals bεj), the possible actions and all the payoff
functions are commonly known. For a formal treatment of common knowledge, see Aumann (1976).
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Lemma 1. Consider the global game Gε. (i) For each player i, the action xi = 1 is strictly
dominant at all bεi ≥ B. (ii) For each player i, the action xi = 0 is strictly dominant at
bεi ≤ B.

Conditional dominance. Let L and R be real numbers. The action xi = 1 is said to be
dominant at bεi conditional on R if ∆ε

i (p−i | bεi ) > 0 for all p−i with pj(b
ε
j) = 1 for all bεj > R,

all j ̸= i. Similarly, the action xi = 0 is dominant at bεi conditional on L if ∆ε
i (p−i | bεi ) < 0

for all p−i with pj(b
ε
j) = 1 for all bεj > L, all j ̸= i.

The concept of conditional dominance is useful for the following reason. Lemma 1 implies
that, for each player j, a strategy pj of G

ε that prescribes to play xj ̸= 1 on a set bεj > B
with positive measure is strictly dominated; hence, each player i can effectively assume that
each player j will play pj(b

ε
j) = 1 for all bεj ≥ B. Eliminating dominated strategies makes,

for each player i, xi = 1 strictly dominant for a larger set of observations and hence makes
more stratregies of each i strictly dominated; hence, this process can be repeated. Those
strategies that survive this process (including elimination of strategies that prescribe playing 1
when that is strictly dominated) are said to survive iterated elimination of strictly dominated
strategies. For a textbook treatment of iterated dominance, see Osborne and Rubinstein
(1994).

Increasing strategies. For some X ∈ R, let pXi denote the particular strategy such that
pXi (b

ε
i ) = 0 for all bεi < X and pXi (b

ε
i ) = 1 for all bεi ≥ X. I will call pXi the increasing strategy

with switching point X. By pX = (pX1 , p
X
2 , ..., p

X
N) I denote the strategy vector of increasing

strategies with switching point X, and pX−i = (pXj )j ̸=i. Note that xi = 1 is strictly dominant
at bεi conditional on R if and only if ∆ε

i (p
R
−i | bεi ) > 0. Similarly, if xi = 0 is strictly dominant

at bεi conditional on L then it must hold that ∆ε
i (p

L
−i | bεi ) < 0.

We now have all notation in place to proceed with the core of the analysis.
Iteration from the right. Let i be arbitrary. Take p−i = pB−i and note that ∆ε

i (p
B
−i | bεi ) is

continuous and monotone non-decreasing in bεi . Moreover, recall from Lemma 1 that xi = 1

is strictly dominant at bi = B, so ∆ε
i (p

B
−i | B) > 0. By the same Lemma, I also know that

∆ε
i (p

B
−i | B) < 0. Monotonicity and continuity of ∆ε

i (p
B
−i | bεi ) in bi then imply there exists a

point R1 such that B < R1 < B which solves:

∆ε
i (p

B
−i | R1) = 0. (6)

To any player i, the action xi = 1 is strictly dominant at all bεi > R1 conditional on B.
This argument can be repeated and I obtain a sequence B = R0, R1, R2, .... For any k ≥ 0

and Rk such that ∆ε
i (p

Rk

−i | Rk) > 0, there exists a Rk+1 < RK such that ∆ε
i (p

Rk

−i | Rk+1) = 0.
Induction on k allows for the conclusion that (Rk) is a monotone sequence. Moreover, I
also know that Rk ≥ B for all k ≥ 0 since xi = 0 is strictly dominant at bεi < B. Any
bounded monotone sequence must converge. I let R∗ denote the limit of sequence (Rk). By
the definition of a limit, R∗ must satisfy:

∆ε
i (p

R∗

−i | R∗) = 0. (7)

It follows that a strategy pi survives iterated elimination of strictly dominated strategies only
if pi(b

ε
i ) = 1 for all bεi > R∗, all i.
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Iteration from the left. Iterative elimination of strictly dominated strategies yields the
point R∗ when starting from the right, that is, a range of signals bεi for which xi = 1 is
conditionally and strictly dominant. A similar procedure can be performed starting instead
from the left, from signals bεi for which xi = 0 is unconditionally and strictly dominant.
Because this analysis is symmetric to the procedure discussed above, I omit it in the main
text. A complete proof may be found in the appendix.

Lemma 2. (i) If a strategy pi survives iterated elimination of strictly dominated strategies,
then it must hold that pi(b

ε
i ) = 1 for all bεi > R∗. (ii) If a strategy pi survives iterated

elimination of strictly dominated strategies, then it must hold that pi(b
ε
i ) = 0 for all bεi < L∗.

I derived two limits L∗ and R∗ that demarcate iterative dominance regions of the signal
space. I next show that L∗ = R∗. To prove this, the following result is key.

Proposition 2. For all X such that B + ε ≤ X ≤ B − ε, the following holds:

∆ε
i (p

X
−i | X) = X −

N−1∑
m=0

c(m+ 1)

N
+ d. (8)

It follows that ∆ε
i (p

X
−i | X) is strictly increasing in X for all X such that B + ε ≤ X ≤ B− ε.

From the definitions of R∗ and L∗, using Proposition 2, one can conclude that L∗ = R∗. I
henceforth write B∗ where B∗ = L∗ = R∗. The point B∗ is given by:

B∗ =
N∑

n=1

c(n)

N
− d. (9)

Thus, if a strategy pi survives iterated elimination of strictly dominated strategies, then it
must hold that pi(b

ε
i ) = pB

∗
i (bεi ) for all b

ε
i ̸= B∗. The action prescribed by a strategy pi that

survives iterated dominance can differ from that prescribed by pB
∗

i only in the measure-zero
event that bεi = B∗. I refer to this by saying that Gε has an essentially unique strategy vector
surviving iterated elimination of strictly dominated strategies.

Theorem 1. For all ε such that 2ε < min{c(N)−d−B,B−c(1)+d}, the strategy vector pB
∗

is the essentially unique strategy vector surviving iterated elimination of strictly dominated
strategies of the game Gε. In particular, if, for any player i, the strategy pi survives iterated
elimination of strictly dominated strategies, then pi must satisfy pi(b

ε
i ) = pB

∗
i (bεi ) for all

bεi ̸= B∗.

Theorem 1 holds for general ε > 0 provided the assumption that b and εi (all i) are drawn
independently from the uniform distribution. For the limit as ε → 0, Frankel et al. (2003)
establish the very general result that any global game with strategic complementarities in
which b is drawn from any continuous density with connected support and each εi is drawn
independently from any (possible player-specific) atomless density has an essentially unique
strategy vector surviving iterated elimination of strictly dominated strategies in the limit as
ε → 0. Moreover, for potential games the equilibrium selected is noise independent and given
by the vector of strategies in which each player i chooses the action that coincides with the
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potential maximizer of the game. This means that the strategy vector found in Theorem 1
generalizes to far more general distributions than assumed here.8

Recall that a strategy vector p = (p1, p2, ..., pN ) is a Bayesian Nash equilibrium (BNE) of
Gε if for any pi and any bεi it holds that:

pi(b
ε
i ) ∈ argmax

xi∈{0,1}
πε
i (xi, p−i(b

ε
−i) | bεi ), (10)

where πε
i (xi, p−i(b

ε
−i) | bεi ) =

∫
πi(xi, p−i(b

ε
−i) | b) dΦε(b, bε−i | bεi ). It is therefore immediate

that pB
∗
is a BNE of Gε. The following proposition establishes a much stronger result: if the

strategy vector p = (pi) is a BNE of Gε, then for each pi it must hold that pi(b
ε
i ) = pB

∗
(bεi )

for all bεi ̸= B∗. I say that Gε has an essentially unique BNE.

Theorem 2. The strategy vector pB
∗
is the essentially unique Bayesian Nash equilibrium

of the game Gε. In particular, any equilibrium strategy pi satisfies pi(b
ε
i ) = pB

∗
i (bεi ) for all

bεi ̸= B∗ and all players i.

Theorem 2 does not that players will perfectly coordinate their actions (technological
choices).9 For ε > 0 and B sufficiently close to B∗, it is possible that some players receive
signals above B∗ while others see a signal below it. When this occurs, players will fail
to coordinate their actions (i.e. some will choose xi = 1 while others choose xi = 0).
Observed coordination failures hence are not necessarily at odds with, and therefore do not
by themselves invalidate the model. When a coordination failure occurs, the equilibrium
outcome is inefficient.

In the limit as ε → 0, the global climate game Gε selects an essentially unique equilibrium
of the underlying coordination game with multiple equilibria. To see this, note that for any
b > B∗, there is ε < B∗ − b so that b − ε > B∗. Since bεi ∈ [b − ε, b + ε] and p∗ = pB

∗
this

implies that p∗i (b
ε
i ) = 1 for all bεi consistent with b and all i.

Even as ε → 0 and players coordinate their actions with probability 1, the unique
equilibrium can be inefficient. In particular, players coordinate on 0 (use fossil fuels) for all
b < B∗ even though the outcome in which players coordinate on 1 (use renewables) is Pareto
strictly dominant for all b > b̄ (and even though they know it).

The result stands in contrast to the common and often implicit assumption in the
environmental literature that players can, by sheer force of will, coordinate on the efficient
equilibrium (Barrett, 2006; Hoel and de Zeeuw, 2010).

Corollary 1. (i) For all b > B∗+ε it holds that Pr
[
pB

∗
(bε) = 1

]
= 1. (ii) For all b < B∗−ε

it holds that Pr
[
pB

∗
(bε) = 0

]
= 1.

4 Network Subsidies

Inefficiency in both the game of complete information G(b) and the global game Gε begs the
question how a policymaker can influence the game in order to reach an efficient outcome. I

8In particular, the reader is referred to their result on (local) potential games with own-action quasi-concave
payoffs, i.e. Theorem 4.

9Perfect coordination of actions means that all players choose the same action.
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consider the problem of designing policies to influence players’ incentives so as to implement
the Pareto efficient outcome of the game in strictly dominant strategies. That is, I seek to find
policies that turn playing xi = 1 into a strictly dominant strategy whenever coordination on
1 is also the efficient outcome of the game; similarly, I want xi = 0 to be a strictly dominant
strategy when coordination on 0 is Pareto efficient.10 I assume that the policymaker is fully
informed about players’ possible actions as well as the parameters of the model that are
common knowledge among the players. To stay with the application to climate change, I
confine the set of feasible policies to subsidies and taxes.

4.1 Game of Complete Information

Consider again the game of complete information G(b). Recall from Proposition 1 that
coordination on x = 1 is the Pareto dominant outcome of the game for all b > b̄, whereas
coordination on x = 0 is efficient for all b < b̄.

My aim is to find a subsidy that incentivizes players to coordinate on the efficient outcome
of the game for any b. Concretely, I want to formulate a tax and/or subsidy policy that
makes using renewables (play xi = 1) strictly dominant for all b > b̄ while leaving fossil fuels
(play xi = 0) strictly dominant at b < b̄. I say that such a subsidy implements the efficient
outcome of the game in strictly dominant strategies for almost all b, i.e., for all b except b̄.

I first show that if coordination on renewables is a Nash equilibrium of the game G(b),
then the policymaker can implement coordination on this outcome at zero cost, even if using
fossil fuels is also a Nash equilibrium. The basic idea is to offer players who use renewables a
subsidy that guarantees them a gain equal to that they would have realized in the hypothetical
case that all other players also use renewables. To this end, let the policymaker offer a
network subsidy s∗(x) to each i choosing to use renewables when x is played. For each x, let
s∗(x) be given by:

s∗(x) = ∆i(1−i | b)−∆i(x−i | b) = c(n(x))− c(N). (11)

If a player uses renewables (and the action vector x is played), they receive a network subsidy
equal to s∗(x) as specified in (11). If instead a player uses fossil fuels, the policymaker pays
them nothing. Observe that, conditional on s∗(·), an individual player’s gain from using
renewables, rather than fossil fuels, is:

∆i(x−i | b) + s∗(x) = ∆i(x−i | b) + ∆i(1−i | b)−∆i(x−i | b) = ∆i(1−i | b), (12)

for any x, confirming the claim that a network subsidy scheme s∗(·) allows players to consider
only the gain ∆i(1−i | b) = b− c(N) + d when choosing their actions.

10This question is related to the literature on mechanism design and (strictly dominant strategy) imple-
mentation. That is, I study the problem of a policymaker who seeks to change the original game studied in
Section 2 and 3 with the aim of making coordination on the efficient outcome of the game a strictly dominant
strategy for all players (Laffont and Maskin, 1982; Myerson and Satterthwaite, 1983; Kuzmics and Steg, 2017).
For applications of mechanism design and implementation theory to pollution problems like climate change,
see Duggan and Roberts (2002), Ambec and Ehlers (2016), and Martimort and Sand-Zantman (2016). As an
extension for future work directly related to the mechanism design literature, I hope to explicitly compare
network subsidies the the well-studied Vicker-Clarke-Groves mechanism (such a comparison is also made in
Ambec and Ehlers, 2016).
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Theorem 3. Let G(b | s∗) denote the game G(b) in which players are offered the network
subsidy s∗(·) on playing 1.

(i) If 1 is a Nash equilibrium of G(b) (i.e. if b + d ≥ c(N)), then 1 is implemented in
weakly dominant strategies with s∗(·) and no subsidies have to be paid.

(ii) If 1 is a strict Nash equilibrium of G(b) (i.e. if b+ d > c(N)), then 1 is implemented
in strictly dominant strategies with s∗(·) and no subsidies have to be paid.

(iii) If 1 is not a Nash equilibrium of G(b) (i.e. if b+ d < c(N)), then 0 is implemented in
strictly dominant strategies with s∗(·) and no subsidies have to be paid.

Note that for all b > c(N)− d, and provided the network subsidy scheme s∗(·) is offered,
the policymaker may even tax playing xi = 1 yet still implement 1 in strictly dominant
strategies.

Remark 1. Let b > c(N)−d, so 1 is both a strict Nash equilibrium and the efficient outcome
of the game G(b). If the policymaker offers the network subsidy scheme s∗(·), the policymaker
can impose a tax t(b) ≤ b+d−c(N) on playing xi = 1 but nevertheless implement coordination
on 1 in strictly dominant strategies.

Theorem 3 tells us that a policy of network subsidies allows the policymaker costlessly to
implement the efficient Nash equilibrium of G(b) in (strictly) strictly dominant strategies if
the game has multiple (strict) Nash equilibria. While this is a desirable property, it does
not guarantee that a network subsidy scheme implements the efficient outcome of the game
for all b. To see this, observe that 0 is the unique strict Nash equilibrium of G(b) for all
b < c(N)−d, while 1 is the efficient outcome for all b > b̄ = (c(N)−d)/N . Hence, if c(N) > d
the policymaker cannot implement the efficient outcome of the game for all b ∈ (b̄, c(N)− d)
using a network subsidy scheme alone.

If 1 is not a Nash equilibrium of the game G(b), but 1 is the efficient outcome, then in
order to implement 1 in strictly dominant strategies, the policymaker can use a combination
of Pigovian taxes and network subsidies to achieve its goal. First, let the policymaker again
offer the network subsidy scheme given by s∗(·). As noted before, the net (accounting for
subsidies) gain from playing 1 rather than 0 becomes ∆i(x−i | b) + s∗(x) = ∆i(1−i | b) when
players are offered s∗(·). Second, let the policymaker levy an carbon tax t(b) to playing 0.
The purpose of the carbon tax is to make sure that ∆i(1−i | b) + t(b) > 0 for all b > b̄ while
∆i(1−i | b) + t(b) < 0 for all b < b̄; that is, the tax should make 1 a Nash equilibrium of the
game if and only if 1 is also the efficient outcome; otherwise 0 should be the equilibrium. A
tax t(b) that achieves this is given by:

t(b) > ∆(1−i | c(N)− d)−∆(1−i | b) = c(N)− d− b if b ≥ b̄, (13)

while t(b) = 0 otherwise. It is easy to verify that t(b) implements coordination on 1 as a
strict Nash equilibrium for all b > b̄ while leaving xi = 0 strictly dominant for all b < b̄.

Theorem 4. Let G(b | s∗, t) denote the game G(b) in which the policymaker both offers the
network subsidy scheme s∗(·) and levies the carbon tax t(b). If 1 is not a Nash equilibrium of
G(b), but 1 is the Pareto efficient outcome, then, by taxing xi = 0 through t(b) while also
offering a network subsidy s∗(·) to playing xi = 1, 1 can be implemented in strictly dominant
strategies at no cost (and tax revenues will be zero).
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The combination of a taxes and subsidies discussed in Theorem 4 resembles the recom-
mendation by Acemoglu et al. (2012, 2016), Hart (2019) and Harstad (2020) to combine a
carbon tax on the use of dirty technologies with a subsidy on (R&D in) renewables. In their
setups, the tax is meant to correct the environmental externality deriving from emissions
whereas the subsidy addresses the network externality, or strategic complementarity, in clean
technologies. Much the same mechanism is at work here. The carbon tax is a Pigouvian tax
that internalizes the environmental externality from using fossil fuels. The network subsidy
instead solves the coordination problem that derives from strategic complementarities.

Why does a network subsidy work so well despite the low cost? The key property of a
network subsidy set at s∗(·) is that it eliminates all strategic uncertainty, i.e. the uncertainty
a player has about the actions chosen by all other players. The network subsidy thus removes
the payoff uncertainty deriving from strategic uncertainty interacted with technological
spillovers – it turns the original coordination game into a simple dominance solvable game
for all b. In so doing, the network subsidy manages to eliminate all inefficiencies caused
by players’ failure to internalize the technological spillovers inherent in clean investments.
Intuitively, the network subsidy works like an insurance. It protects individual players against
the risk of small network externalities from renewables adoption in case many others are
using fossil fuels. Because of this insurance, it impels individuals toward renewables. The
network subsidy does not have to be paid as a result, being conditional on low renewables
adoption.

Governments may at times be reluctant to rely on taxes when trying to curb private
sector emissions, for example because taxes are unpopular with voters. When this is true, the
government cannot (or at least does not want to) levy the carbon tax t(b) but may rather
rely on an environmental subsidy s(b) on playing 1.

Remark 2. If 1 is not a Nash equilibrium of G(b), but 1 is the Pareto efficient outcome,
then, by subsidizing xi = 1 through s(b) = c(N)− d− b while also offering a network subsidy
s(·) to playing xi = 1, 1 can be implemented in strictly dominant strategies. Total subsidy
spending will be N · s(b) when b > b̄, and zero otherwise.

In a global game Gε, the logic and analysis of network subsidies is largely the same as
presented here. Account must be taken of two additional complications however. First, the
benefit parameter b is unobserved so the tax on using fossil fuels cannot depend on b directly.
Second, perfect coordination of actions may fail due to the spread in players’ signals. I take
up both of these issues in the next section.

4.2 Global game

Consider the global game Gε discussed in Section 3. In this game, players do not observe b
but only some noisy private signal of it. I henceforth assume that the policymaker observes
neither the true b nor a signal of it.

In this section I address the question of what tax-subsidy scheme suffices to implement
the Pareto efficient outcome of the underlying game G(b) in strictly dominant strategies for
all b. I will assume the policymaker seeks policies that, for each player i = 1, 2, .., N , turn
xi = 1 into a strictly dominant action for all bεi > b̄ while leaving xi = 0 strictly dominant for
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all bεi < b̄.11 I will also assume that the policy scheme does not depend on the unobserved
true b.12.

First, let us again assume the policymaker offers each player a network subsidy s∗ equal
to:

s∗(x) = c(n(x))− c(N), (14)

which is the same network subsidy as in (11). One observes that for any bεi it is true that
s∗i (x) = ∆ε

i (x−i | bεi ) − ∆ε
i (1 | bεi ), so in the global game the interpretation of s∗(x) is the

same as in G(b): it is the difference in the gain from using renewables between the best-case
scenario with full coordination on renewables and the realized outcome x.

It is easy to verify that the network subsidy s∗(·) makes playing 1 strictly dominant for
all bεi > c(N) − d. When players are offered s∗(·) for each x−i, their expected gain (the
expectation is over b) is:

∆ε
i (x−i | bεi ) + s∗(x) = ∆ε

i (1 | bεi ), (15)

where ∆ε
i (x−i | b) := 1

2ε

∫ bεi+ε

bεi−ε
∆(x−i | b)db. Note that ∆ε

i (1 | bεi ) is strictly positive for all

bεi > c(N)− d and strictly negative for all bεi < c(N)− d. Let Gε(s∗) denote the global game
Gε in which the policymaker offers the network subsidy scheme s∗(·).

Lemma 3. Consider the global game Gε. Let the policymaker offer a network subsidy s∗(·)
on playing 1. Then the action xi = 0 is strictly dominant at bεi < c(N)− d; the action xi = 1
is strictly dominant at bεi > c(N)− d.

As in the game of complete information, a network subsidy alone may not suffice to
implement the efficient outcome of the game; for all b ∈ (b̄, c(N) − d − ε), each player i
receives a signal bεi < c(N)− d so playing 0 is strictly dominant despite the network subsidy.
Therefore, let the policymaker – on top of the network subsidy – levy an carbon tax t on
playing xi = 0 that makes xi = 1 strictly dominant, for all bεi > b̄ and all i, constrained by
the condition that xi = 0 should still be strictly dominant (despite both the subsidy and the
tax) for all bεi < b̄. Thus, the policymaker wants to find a tax t (recall again the assumption
that t does not depend on players’ private knowledge of b) that solves:

∆ε
i (x−i | bεi ) + s∗(x) + t = ∆ε

i (1 | bεi ) + t > 0 for all bεi > b̄

∆ε
i (x−i | bεi ) + s∗(x) + t = ∆ε

i (1 | bεi ) + t < 0 for all bεi < b̄,
(16)

for all i and all x−i. It follows that t is given by:

t = (N − 1) · b̄ = (N − 1) · c(N)− d

N
. (17)

11I use the word “leaving” because in the global game Gε without policy intervention, playing xi = 0 is
already strictly dominant for all i and all bεi < b̄ < B∗.

12To be more precise, I assume that the only observables on which the policy scheme depends are players’
actions. This is a restrictive assumption. Players possess private information (their signals) about b and
this information is correlated. We thus know from the literature on mechanism design that the policymaker
can (costlessly) extract the vector of signals bε = (bε1, b

ε
2, ..., b

ε
N ) from the players (Crémer and McLean, 1988;

McAfee and Reny, 1992). Especially when ε is small, knowing bε would provide an almost perfect signal of
the true b to the policymaker. It seems intuitive that the policymaker might use this knowledge to its benefit
(and the benefit of all players as a whole).
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Let Gε(s∗, t) denote the global game Gε in which the policymaker both offers the network
subsidy scheme s∗(·) and levies an carbon tax t. The following result regarding Gε(s∗, t) is
immediate.

Theorem 5. Consider the global game Gε(s∗, t). If the policymaker offers a network subsidy
s∗(·) on playing xi = 1 and levies a tax t on playing xi = 0, then, for each player i, the action
xi = 0 is strictly dominant for all bεi < b̄ and the action xi = 1 is strictly dominant for all
bεi > b̄. Hence, for all b /∈ [b̄− ε, b̄+ ε] the policymaker can implement the efficient outcome
of the game G(b) in strictly dominant actions at no cost.

If the policymaker is reluctant to tax playing 0, it may also offer both a network subsidy
s∗(·) together with an environmental subsidy equal to t to playing 1. Such a policy is evidently
equivalent with regard to players’ incentives, although it differs for the policymaker’s budget.

Corollary 2. Consider the global game Gε. Let the policymaker offer a network subsidy s∗(·)
on playing 1. In addition, let the policymaker offer an environmental subsidy (rather than a
tax) equal to t on playing 1. Then the action xi = 0 is strictly dominant for all bεi < b̄ while
the action xi = 1 is strictly dominant for all bεi > b̄. Hence, the policymaker can implement
the efficient outcome of the game G(b) for all b /∈ [b̄− ε, b̄+ ε]; total subsidy spending is N · b̄
if b > b̄+ ε and 0 if b < b̄− ε.

4.3 Self-financed network tax-subsidy

If Nature draws a true b in (b̄− ε, b̄+ ε), coordination on either 0 or 1 in Gε(s∗, t) may fail.
The reason is that, for those b, players’ signals need not all fall in the strict dominance regions
identified in Theorem 5. The network subsidy scheme s∗(·) may hence not be costless; for
any x not equal to 0 or 1, total spending on network subsidies will be n(x) · s∗(x) > 0. The
strong performance of a network subsidy scheme may thus break down in a global game. For
ε > 0, the event that a true b in (b̄− ε, b̄+ ε) is drawn has prior probability 2ε/(B −B) > 0.
Only in the limit as ε → 0 will this problem disappear: players perfectly coordinate their
actions (in equilibrium) save for the probability-zero event that b = b̄.

To work around this problem, I now derive a network tax-subsidy scheme where subsidy
payments on xi = 1 are financed through a network tax levied on choosing xi = 0.13 Let the
subsidy be denoted s∗∗(x); the corresponding tax is denoted t∗∗(x). Thus, when x is played,
aggregate spending on network subsidies is n(x) · s∗∗(x) and aggregate revenues from network
taxation are (N − n(x)) · t∗∗(x). I impose the ex post budget constraint that

(N − n(x)) · t∗∗(x)− n(x) · s∗∗(x) = 0 (18)

for all x.

13An alternative approach to this problem would be to let the policymaker extract players’ private signals
(see footnote 12) and then construct a policy scheme such that, when the signals indicate a high b, the
policymaker may tax playing 1 similarly to the way discussed in Remark 1. The policymaker could then
construct this policy in such a way that ex ante, i.e. before b is drawn, the policy scheme has expected
cost zero. This is different from the present analysis, which is more demanding and imposes ex post budget
neutrality.
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Next, the tax-subsidy scheme, together with the carbon tax t given by (17), must make
xi = 1 strictly dominant for all bεi > b̄ while leaving xi = 0 strictly dominant for all bεi < b̄.
Thus players’ gains from playing 1, rather than 0, accounting for taxes and subsidies, should
satisfy:

∆ε
i (x−i | bεi ) + t+ s∗∗(x) + t∗∗(x) > 0 for all bεi > b̄, (19)

∆ε
i (x−i | bεi ) + t+ s∗∗(x) + t∗∗(x) < 0 for all bεi < b̄, (20)

for all i and all x−i. Equations (19) and (20) represent the incentive constraints of a network
tax-subsidy scheme. Combined with the budget constraint, this yields the following network
tax-subsidy scheme (s∗∗, t∗∗):{

t∗∗(x) = n(x)
N

[c(n(x))− c(N)]

s∗∗(x) = N−n(x)
N

[c(n(x))− c(N)]
(21)

The policy scheme ((s∗∗, t∗∗), t) can now be summarized as follows. When x is played
and player i has played 1 in x, they receive a network subsidy equal to s∗∗(x); however, if
player i played 0 in x, they pay a tax equal to t + t∗∗(x). Let Gε((s∗∗, t∗∗), t) denote the
global game Gε in which the policymaker both offers the network subsidy scheme s∗(·) and
levies an carbon tax t. The following result follows immediately from the preceding analysis.

Theorem 6. Consider the global game Gε((s∗∗, t∗∗), t). Let the policymaker offer a network
subsidy equal to s∗∗(·) on playing 1 while levying a tax equal to t+ t∗∗(·) on playing 0. This
policy makes the action xi = 0 strictly dominant for all bεi < b̄; the action xi = 1 is strictly
dominant for all bεi > b̄. Consequently, the policymaker can implement efficient outcome of
the game G(b) for all b /∈ [b̄− ε, b̄+ ε]; net spending on the policy scheme ((s∗∗, t∗∗), t) is zero
for all b.

The present analysis did not make use of the fact that, without policy interventions,
playing pB

∗
is the essentially unique strategy profile surviving iterated dominance in the global

game Gε. Another approach toward ((iterative) strictly dominant strategy) implementation
in Gε would be to study what mechanisms the policymaker could design to shift the threshold
B∗ down toward b̄. I intend to do this in future work.

5 Two-sided markets

When motivating the model, I mentioned that strategic complementarities in players’ choices
may be the consequence of indirect spillovers in a two-sided market. An example would be
electric vehicles stimulating the installation of charging stations and vice versa (Li et al.,
2017). How does the idea behind network subsidies pan out for two-sided markets?

Consider a simple two-sides market. Let one side of the market be composed of ‘households’,
who choose x to maximize the payoff function:

πi(x, I | b) =

{
b · n(x)− d if xi = 0,

b · n(x) + I − c̄ if xi = 1,
(22)
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where (for simplicity) c̄ is now a constant cost of renewables and I is the spillover (a quantity
of some commodity, say) from the other side of the market.

The other side of the market is populated by ‘firms’ who supply a commodity in the quantity
I = I(n(x)) to maximize some payoff function u(I | x) so that I(n(x)) = argmaxI u(I | n(x))
and I(n) is increasing in n. It does not matter for the present discussion whether the
secondary market observes x prior to choosing I or whether both markets choose x and I
simultaneously. I therefore assume that I is determined after x was played. Note that by
choosing functions such that c̄ − I(n) = c(n) for all n = 1, ..., N , the payoff function (22),
subject to I = I(x), is simply (1). I will henceforth assume that c̄ − I(n) = c(n) for all
n = 1, ..., N so that the results derived above can be immediately applied.

For concreteness, the households may be thought of as individuals choosing between an
elecric vehicle (the renewable) and a fossil fuel car; the car fleet chosen is given by x. The
firms are then companies that operate charging stations; the number of charging stations is I.

Consider the following policy as an alternative to network subsidies. First, the policymaker
announces that, for any x and I(n(x)), it will supply I(N) − I(n(x)) whenever n(x) > 0.
Then the households simultaneously choose x, after which the firms supply I(n(x)). Finally
the policymaker supplies I(N) − I(n(x)) (if n(x) > 0), payoffs are realized and the game
ends. Let K(I) denote the cost to the policymaker of supplying an amount I of the good in
the secondary market, and K(0) = 0.

On a technical level, the following result is a corollary to Theorems 3 and 4. I label it a
proposition due to its interesting policy implication.

Proposition 3. Consider the game of complete informatin G(b) with a two-sided market.
Let the policymaker offer a policy in which, for any x, it supplies I(N) − I(n(x)) of the
commodity in the secondary market.

(i) If 1 is a [strict] Nash equilibrium of G(b), then 1 is implemented in [strictly] dominant
strategies. The costs to the policymaker are 0.

(ii) If 1 is not a Nash equilibrium of G(b), then 1 is implemented in dominant strategies
provided the policymaker taxes playing xi = 0 according to (13). The costs to the
policymaker are 0.

A similar result also applies to the global game Gε, subject to the same necessary minor
alterations discussed in Sectio 4. The following is a corollary to Theorem 5.

Proposition 4. Consider the global game Gε with a two-sided market. Let the policymaker
offer a policy in which, for any x, it supplies I(N)−I(n(x)) of the commodity in the secondary
market. In addition, let the policymaker tax playing xi = 0 according to (17). Then for each
player i, the action xi = 0 is strictly dominant for all bεi < b and the action xi = 1 is strictly
dominant for all bεi > b.

Economically, a policy of supplying I(N)− I(n(x)) of the commodity in the secondary
market (e.g. building charging stations) is clearly distinct from a direct (network) subsidy on
playing 1 (e.g. tax discounts on electric vehicles). Mathematically, however, the two policies
are exactly equivalent for the households as I(N) − I(n(x)) = c(n(x)) − c(N) = s∗i (x). It
follows that, at least for the households, incentives are the same whether the policymaker
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offers a network subsidy s∗i or pledges to supply I(N) − I(n(x)) of the secondary market
commodity for all x. Combined, if necessary, with an appropriate tax on playing xi = 0,
coordination on x = 1 is then achieved for all b > b̄ in G(b) (b > b̄+ ε in Gε) and firms in
the secondary market supply I(n(x)) = I(N) of the commodity. The policymaker is then
required to supply I(N) − I(N) = 0, and the associated cost is K(0) = 0. When instead
b < b̄ in G(b) (b < b̄− ε in Gε), players coordinate on x = 0 so n(x) = 0 and the policymaker
does not to provide any commodity, meaning the policy is also costless.

6 Concluding remarks

I study discrete contributions to a public good characterized by network effects. Network
effects turn the problem into a coordination game with multiple Pareto-ranked equilibria. I
address equilibruim selection using the methodology of global games. Uncertainty leads to
selection of a unique equilibrium that in well-identified cases is inefficient. I also design the
novel policy of network subsidies that corrects the entire externality deriving from network
effects but does not, in equilibrium, cost the policymaker anything. I apply the model to
climate change mitigation and the adoption of renewable technologies.

Climate change is a public and and its mitigation a public good. While some degree of
mitigation could be achieved at the intensive margin – that is, by reducing greenhouse gas
emissions given the current capital stock –, deep cuts in emissions can only be reached upon a
large-scale switch to renewable technologies. Yet renewable technologies often exhibit network
effects (Acemoglu et al., 2012, 2016; Hart, 2019; Harstad, 2020). In this sense, climate change
mitigation is, at least in part, a coordination game of renewables adoption. The question
arises whether the continued dominance of fossil fuel technologies is a coordination failure
and, if so, how policies can be designed to solve this inefficiency.

My results show that a persistent reliance on fossil fuel technologies may be a rational
coordination failure indeed: in a global game, expected payoff-maximizing agents may be
forced to coordinate on using fossil fuels even though coordination on renewables is also a
Nash equilibrium of the complete information game drawn by nature (and even though all
players know it). This finding motivates policy intervention and gives rise to the design of
network subsidies.

This paper fits in with the literature on directed technical change and renewable subsidies
(Acemoglu et al., 2012, 2016; Hart, 2019; Harstad, 2020). My results on policy design echo the
common recommendation that an efficient policy requires both a carbon tax and a subsidy on
renewables. My results differ from the extant literatyre in two notable ways. If coordination
on renewables is already an equilibrium of the (true) coordination game (even if coordination
on fossil fuels is too), then a network subsidy alone suffices to implement the efficient outcome
of the game. In those cases, the first-best can be achieved at zero cost. Moreover, even if
coordination on renewables is not an equilibrium and a combination of taxes and subsidies is
needed, spending on network subsidies is zero in equilibrium.

The derivation of network subsidies is also an exercise in mechanism design or imple-
mentation theory for coordination games. While mechanism design has been applied to
environmental economics and climate chane before (Duggan and Roberts, 2002; Ambec and
Ehlers, 2016; Martimort and Sand-Zantman, 2016), extant papers construct mechanisms
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that solve the free-rider problem. I complement this literature by deriving a mechanism
to overcome the coordination problem. Moreover, note that the logic of network subsidies
depends only upon the strategic complementarities in players’ actions; it does not rely on
the application to climate change. In this sense, my analysis contributes to the literatre on
strategic policy design more generally.

The paper has a number of limitations that future work might seek to relax. First, I study
a one-shot decision problem rather than a repeated game. Second, in implicitly assuming that
technologies are perfectly substitutable, I shy away from discussions on the effect of imperfect
substitutability on policy. Third, my results are derived for specific functional forms; while
results due to Frankel et al. (2003) establish that equilibrium selection continues to occur in
far more general global coordination games, such generalizations are not investigated here.
Fourth, the policymaker was assumed to knows all parameters of the model known to the
players; it is not clear how to design a network subsidy scheme (and what its properties
would be) if the policymaker knows less.

A Proofs

Proof of Lemma 1.

Proof. Observe that ∆i(x | b) > 0 for any x given b ∈ [B − ε, B + ε]. Thus, for bεi = B the
integration in (5) is over positive terms only and ∆ε

i (p−i | B) > 0 for all p−i. This proves
part (i) of the Lemma. The proof of part (ii) relies on a symmetric argument and is therefore
omitted.

Proof for the second half of Lemma 2.

Proof. From Lemma 1 it is known that xi = 0 is strictly dominant at bεi < B. That is,
∆ε

i (p
B
−i | B) < 0. Since it is common knowledge that no player plays a strictly dominated

strategy, a payoff maximizing player i then finds a point L1 such that xi = 0 is strictly
dominant bεi < L1 conditional on B:

∆ε
i (p

B
−i | L1) = 0. (23)

Any expected payoff maximizing player i plays xi = 0 for all bεi < L1. Since this is common
knowledge also, I can repeat the argument over and over. What I obtain is a sequence of
points (Lk), k ≥ 0, each term of which is implicitly defined by:

∆ε
i (p

Lk

−i | Lk+1) = 0. (24)

The sequence (Lk) is monotone increasing. It is also bounded from above by B (or, taking
account of (7), by R∗), implying that it must converge; I call its limit L∗. By construction
this limit solves:

∆ε
i (p

L∗

−i | L∗) = 0. (25)

It follows that a strategy pi survives iterated elimination of strictly dominated strategies only
if pi(b

ε
i ) = 0 for all bεi < L∗, all i.
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Proof of Proposition 2.

Proof. First fix b ∈ [B+ ε, B− ε]. Each player j ̸= i is assumed to play pXj , so the probability
that xj = 1 is given by

Pr[bεj > X | b] = Pr[εj > X − b] =
ε−X + b

2ε
, (26)

for all X ∈ [b − ε, b + ε] while Pr[bεj > X | b] is either 0 or 1 otherwise. Clearly, xj = 0 is
played with the complementary probability (given b and X). Since each εj is (conditional on
b) drawn independently , the probability that m given players j ̸= i play xj = 1 while the
remaining N −m− 1 players play xj = 0 (given pX−i and b) is therefore:[

ε−X + b

2ε

]m [
ε+X − b

2ε

]N−m−1

. (27)

As there are
(
N−1
m

)
unique ways in which m out of N − 1 players j can choose xj = 1, the

total probability of this happening, as a function of b, is:(
N − 1

m

)[
ε−X + b

2ε

]m [
ε+X − b

2ε

]N−m−1

. (28)

When m players j ̸= i play xj = 1, the cost of playing xi = 1 to player i is c(m+ 1).
The derivation so far took b as a known quantity. I now take account of the fact that

player i does not observe b directly but only a noisy signal bεi . Given p−i = pX−i and bεi = X,
the expected gain to player i from playing xi = 1 rather than xi = 0 becomes:

∆ε
i (p

X
−i | X) =

1

2ε

X+ε∫
X−ε

bdb+ d

−
N−1∑
m=0

c(m+ 1)

(
N − 1

m

)
1

2ε

X+ε∫
X−ε

[
ε−X + b

2ε

]m [
ε+X − b

2ε

]N−m−1

db (29)

=X + d−
N−1∑
m=0

c(m+ 1)

(
N − 1

m

) 1∫
0

qm(1− q)N−m−1dq (30)

=X + d−
N−1∑
m=0

c(m+ 1)
(N − 1)!

m! (N −m− 1)!

m! (N −m− 1)!

N !
(31)

=X + d−
N−1∑
m=0

c(m+ 1)

N
, (32)

as given. Equation (29) takes the expression for ∆i(m | b) given in (2) and integrates over b
and m, given bεi = X and p−i = pX−i. Equation (30) relies on integration by substitution (using
q = 1/2− (X − b)/2ε) to rewrite the last integral in (29). Equation (31) rewrites both the
integral in (30) and the the binomial coefficient

(
N−1
m

)
in terms of factorials. Equation (32)

simplifies.
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Proof of Theorem 2.

Proof. Let p be a BNE of Gε. For any player i, define

bi = inf{bεi | pi(bεi ) > 0}, (33)

and
bi = sup{bεi | pi(bεi ) < 1}. (34)

Observe that bi ≤ bi. Now define
b = min{bi}, (35)

and
b = max{bi}. (36)

By construction, b ≥ bi ≥ bi ≥ b. Observe that p is a BNE of Gε only if, for each i, it holds
that ∆ε

i (p−i(b
ε
−i) | bi) ≥ 0. Consider then the expected gain ∆ε

i (p
b
−i(b

ε
−i) | bi). It follows

from the definition of b that pb(bε) ≥ p(bε) for all bε. The implication is that, for each i,
∆ε

i (p
b
−i(b

ε
−i) | bi) ≥ ∆ε

i (p−i(b
ε
−i) | bi) ≥ 0. From Proposition 2 then follows that b ≥ B∗.

Similarly, if p is a BNE of Gε then, for each i, it must hold that ∆ε
i (p−i(b

ε
−i) | bi) ≤ 0.

Consider now the expected gain ∆ε
i (p

b
−i(b

ε
−i) | bi). It follows from the definition of b that

pb(bε) ≤ p(bε) for all bε. For each i it therefore holds that ∆ε
i (p

b
−i(b

ε
−i) | bi) ≤ ∆ε

i (p−i(b
ε
−i) |

bi) ≤ 0. Hence b ≤ B∗.
Since b ≤ b while also b ≥ B∗ and b ≤ B∗ it must hold that b = b = B∗. Moreover, since

pb ≥ p while also pb ≤ p, given b = b = B∗, it follows that pi(b
ε
i ) = pB

∗
i (bεi ) for all b

ε
i ̸= B∗ and

all i (recall that for each player i one has ∆ε
i (p

B∗
−i | B∗) = 0, explaining the singleton exeption

at bεi = B∗). Thus, if p = (pi) is a BNE of Gε then it must hold that pi(b
ε
i ) = pB

∗
i (bεi ) for all

bεi ̸= B∗ and all i, as I needed to prove.

Proof of Proposition 5.

Proof. Strict dominance is an immediate consequence of rewriting the player i’s gain including
taxes and subsidies:

∆ε
i (x−i | bεi ) + s∗(x) + t = ∆ε

i (1 | bεi ) + t = bεi + c(N)− d+ (N − 1) · c(N)− d

N
, (37)

which is strictly positive for all bεi > b̄ and strictly negative for all bεi < b̄. As to the final
claim in the Proposition, observe that each bεi is drawn from [b− ε, b+ ε], given b. Hence, if
b > b̄+ ε then bεi > b̄ for each i, so playing xi = 1 is strictly dominant and players coordinate
on 1, the efficient outcome of the game (for those b). In this case, total spending on subsidies
is s∗(1) = 0. Similarly, if b < b̄ − ε then bεi < b̄ for each i, so playing xi = 0 is strictly
dominant and players coordinate on 0, the efficient outcome of the game (for those b). Since
no player plays 1, total subsidy spending is naturally zero.

Proof of Theorem 3.
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Proof. The gain from choosing xi = 1 rather than xi = 0, conditional on the network subsidy
scheme s∗(·), given b and x−i is (12) which, for all x−i, is (strictly) positive if and only if
1 is a (strict) Nash equilibrium of the game. Thus, the offering a subsidy scheme equal to
s∗(·) turns xi = 1 into a (strictly) strictly dominant strategy whenever 1 is a (strict) Nash
equilibrium of G(b). When players coordinate on 1 total spending on network subsidies is
N · s∗(1) = 0.
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