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Abstract

We develop a dynamic framework for the regulation of stock externalities under

incomplete and asymmetric information. For the case of quadratic costs and benefits,

optimal policies are derived and ordered explicitly. A price-based instrument performs

orders of magnitude better than a quantity-based instrument when the number of

periods if large. In a more general framework, we define and prove existence of optimal

regulation as the implementation of a welfare maximization program conditional

only on informational constraints and instrument class.
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1 Introduction

Stock externalities are the unintended byproduct of cumulative economic activity in a

market over the course of time. To a planner burdened with the control of this market,

the question arises whether traditional tax or quota instruments could – or indeed should –

be adjusted to the dynamic properties intrinsic to the stock externality and, if so, which

instrument performs best. This paper studies these questions for environments with

asymmetric information about market fundamentals.

The issue of instrument choice touches upon an influential literature that originates

with Weitzman (1974). Papers in this tradition usually take an exogenously given set of
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policy instruments and assess their relative merits (c.f. Hoel and Karp, 2001; Zhao, 2003;

Newell and Pizer, 2003; Fell et al., 2012; Weitzman, 2019; Mideksa and Weitzman, 2019;

Pizer and Prest, 2020; Heutel, 2020). On top of these comparisons, this literature also

proposes policy refinements by formulating intuitive policies that are optimized over their

exogenous set of parameters. In this spirit, Kling and Rubin (1997), Newell et al. (2005),

and Pizer and Prest (2020) allow the planner to depreciate or top up banked – unused

and saved for future use – allowances. Similarly, Yates and Cronshaw (2001) consider

banking with a discount rate for allowances (a kind of intertemporal trading ratio à la

Holland and Yates (2015)). Newell et al. (2005) and Lintunen and Kuusela (2018) discuss

adjusting quota in response to the quantity of outstanding allowances. Finally, Karp

and Traeger (2017, 2018) study a cap on emissions that changes in response to aggregate

private information inferred from price signals.

While we too propose and compare new instruments, ours is not a typical prices vs.

quantities exercise. Instead of formulating intuitive policies based on some combination of

existing policies, we derive them from primitives of the problem like market fundamentals

and the externality under investigation. Rather than maximize welfare over a policy’s

exogenously given parameters, we maximize over policies.

Our approach means that the planner considers key characteristics of the externality

carefully. For example, as discussed in Hasegawa and Salant (2014), when regulating a

stock externality with a cap-and-trade program the planner can afford to be less strict on

compliance in any given period as long as overall compliance is guaranteed. The planner

can be lenient in this way, but why stop there? At least in theory it is possible that

further improvements of static policy instruments exist. The driving force behind any

such improvement is the fact that observed outcomes in the market provide valuable

information (i.e. signals, see Harstad and Eskeland, 2010) to the planner, who, in response,

can adapt future policies. In this spirit, Pizer and Prest (2020) develop a dynamically

adjusted quantity instrument while Heutel (2020) extends static taxes over time.1 The

basic idea of these novel instruments is the same: a well-devised instrument allows the

planner to extract private information from the market and uses this information to make

future regulation more efficient. If done well, such policy updating may be very efficient.

Yet while a dynamic framework creates opportunities for the planner to learn and

update policies accordingly, it also breeds problems not encountered in static environments.

The distinction between stock and flow externalities cuts to the core of these. At the risk

1Pizer and Prest also consider policy uncertainty from which, though relevant, both Heutel and this
manuscript abstract away.
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of oversimplification, a flow externality is the byproduct of economic activity at a given

point in time. A stock externality, in comparison, is the consequence of economic activity

over the course of time. The difference matters. For stock externalities that we consider,

past activity does affect the marginal externality of today’s business.

What we do can now be summarized in three simple steps: (1) we build a model with

asymmetric information about market fundamentals where productive activity causes

a pure stock externality, (2) we show that the planner can construct instruments that

drain all private information from the market apart from information that is only revealed

through the market at the end of the last period, and (3) we derive pure price and

quantity instruments that use this private information and implement the best achievable

welfare levels very generally. The second step suggests a regulatory framework can

approach the first-best by decreasing its regulatory time-windows. Indeed, we describe

and order instruments with respect to convergence to first-best. Note that our last step is

fundamentally constructive. We start from optimal social welfare and copy its conditions

so that the market optimally adjusts production to changing market fundamentals. That

is, we require that profit-maximizing firms are always incentivized to produce optimal

amounts when regulated. It turns out that such instruments can always be found and are

intimately related.

We apply our framework to climate change, caused mainly by the cumulative stock of

emitted CO2 (Kolstad, 1996; Allen et al., 2009; Golosov et al., 2014). It is by now widely

accepted that the only way to avoid severe climate change is a large-scale reduction in global

CO2 emissions. There are fundamental uncertainties inherent to the problem, though.

One will be the focus of attention here: the aggregate costs of abatement. While some fear

that any emission reduction threatens thousands of jobs, others foresee that a reduced use

of fossil fuels has no significant bearing on neither economic growth nor employment. We

develop policies that optimally respond when the market learns about these uncertainties.

The emphasis on abatement costs is allegorical; other types of uncertainty resolved before

the closing of markets, and relevant for welfare and thus regulation could be used in their

stead.

Our approach may seem comparable to both Pizer and Prest (2020) and Heutel (2020).

The similarities are mostly superficial. Like Pizer and Prest, we develop a dynamically

updated quantity instrument. Like Heutel, we introduce a new dynamic price instrument.

The crucial difference is our choice of externality. While Pizer and Prest (2020) and Heutel

(2020) study the dynamic regulation of a flow externality, our focus is on stock externalities.
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This distinction is important and may even reverse the ordering of instruments.2 Details

of the externality are crucial in a dynamic framework. The implicit assumption of a flow

externality in the climate context is that historic emissions of greenhouse gases do not, at

all, affect the marginal damages caused by climatic consequences of emissions today. We

think this assumption does not square well with the natural science of climate change (see

for example Allen et al., 2009).

In the application, our proposed policy instruments can be thought of as an advanced

cap-and-trade system. The planner allows firms to freely bank and borrow allowances

between periods. Under our quantity instrument, the planner adapts future injections

of new allowances in response to the amount of periodic over- or under-compliance.

Importantly, we do not propose that banked emissions allowances be apprenticed or

depreciated between periods!3 This is a very subtle, but also very important difference.

The argument boils down to the crucial distinction between flow and stock externalities.

When climate change is modeled as a pure flow externality, an extra ton of emissions

last year may, in principle, have a different effect on climate change than an extra ton of

emissions this year. If there is reason to believe this is true, that is a strong argument to

appreciate or depreciate banked emission allowances. Yet when climate change is modeled

as a pure stock externality the marginal climate damage from an extra ton of emissions is

exactly the same whether they are emitted this or any other year (because all that matters

is total emissions over time). An efficient instrument therefore treats the marginal climate

damage of emissions in any period as equal and should not touch banked allowances. To

nonetheless make aggregate emissions responsive to market fundamentals, new injections

of emission allowances can instead be adjusted. Our price instrument deviates in the

last period, when it does not set a quota but fixes the emission tax based on previous

demand for allowances. Either of our two instruments may constitute an efficient means

of a country or group of countries to implement emissions reductions.

2 Model

2.1 Benefits, Costs, and Welfare

Consider a two-period world (relaxed in Section 2.8) and a representative profit-maximizing

firm producing a homogeneous good. At every time t ∈ {1, 2}, producing an amount q̃t

2As a point in case, Weitzman’s 2019 surprising ordering of instruments originates in his flow externality
model and is reversed, as we show, for a stock externality.

3Compare Yates and Cronshaw (2001) and Rubin (1996).
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of the good yields benefits Bt(q̃t; θt) to the firm (we abstract away from broader social

benefits of production). The parameter θt captures market fundamentals observed by the

firms at time t but not known to the planner. We conveniently write B′t = ∂Bt/∂q̃t and

normalize θt such that ∂Bt/∂θt = 1. We assume concave benefits B′′t < 0. It is common

knowledge that E[θt] = 0, E[θ2t ] = σ2
t , and E[θ1θ2] = ρσ1σ2. In a market with free and

competitive trade of production rights, an equilibrium price will emerge, denoted p̃t = B′t.

For the purposes of our study, the variance σ2
t provides a natural measure of uncertainty

in the market.

Cumulative production imposes a cost on society in the form of a stock externality,

given by C(q̃1 + q̃2). We assume convex costs, C ′ > 0, C ′′ > 0. Note that our approach

toward stock externalities is non-standard as we assume that costs occur at the end of

the final period only (c.f. Kolstad, 1996; Ulph and Ulph, 1997; Gollier et al., 2000); this

contrasts with the more typical, and general, treatment of stock externalities in which the

externality imposes a cost on society in each period (depending on the stock of production

in that period). Thus, in the application to global warming, we assume away any costs

that climate change may be causing already now and only look at future damages.

The planner’s problem is to find policies such that production levels q̃1 and q̃2 maximize

welfare:

W (q̃1, q̃2; θ1, θ2) = B1(q̃1; θ1) +B2(q̃2; θ2)− C(q̃1 + q̃2). (1)

The timing of regulation and equilibrium follows these stages:

1. The planner chooses a policy instrument;

2. Firms observe first-period (t = 1) fundamentals θ1;

3. First-period markets open and production q̃1 is realized;

4. Firms observe second-period (t = 2) fundamentals θ2;

5. Second-period markets open and production q̃2 is realized;

6. Costs due to aggregate production Q̃ =
∑

t q̃t are realized.

Note that market outcomes are public information; i.e. they are observed by the planner.

With complete information on θt, the fully knowledgeable planner can set these quantities

q̃1, q̃2 directly or else charge a price on production that will make the profit-maximizing

firm produce the same quantities, and these two instruments are perfectly equivalent, see

Montgomery (1972). However, this formal equivalence between instruments breaks down

once we introduce an informational disparity, captured here by θt (Weitzman, 1974).
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2.2 Optimal Response

We study an environment with asymmetric information and imperfect foresight. Because of

the unpredictable element in future market conditions, the ex post first best is unattainable:

it would require the planner to be aware of firms’ private knowledge about market

fundamentals even before firms themselves are. Instead, the best instrument a planner

could aim for is one that reacts to any innovations in market fundamentals as soon as they

are revealed to the firms. Since such a hypothetical instrument responds optimally to new

information, we call it the Optimal Response.

In terms of our model, the Optimal Response determines the cap on emissions in any

period t only after θt, the market fundamentals in period t, has been drawn. It sets q̃1 and

q̃2 that implement:

max
q̃1

E1 max
q̃2

E2W (q̃1, q̃2; θ1, θ2), (2)

where Et is shorthand for the expected value of W conditional on θs for all s ≤ t. (Note

that this instrument is equivalent to one where prices are chosen conditional on market

fundamentals).

While the Optimal Response is a hypothetical instrument, it provides a useful bench-

mark for policy performance. As we shall show, a smart choice of pure price or quantity

instrument allows the planner to implement the Optimal Response solution in all regu-

latory periods but the last. When there are many periods and each period is relatively

short (see Section 2.8), this result is remarkably strong. Simple pure price or quantity

instruments suffice to let the planner implement welfare levels almost as though there were

no asymmetric information. For all but the last period, complicated and multi-dimensional

hybrid instruments (Roberts and Spence, 1976; Weitzman, 1978; Pizer, 2002; Abrell and

Rausch, 2017) cannot do better than our pure price and quantity instruments.

2.3 Linear-Quadratic Specification

The main body of our analysis will focus on a simplified model where benefits and costs

are linear-quadratic in emissions. This simplest possible case will allow us to derive our

new instruments – Responsive Quotas and Endogenous Taxes – constructively and in a

precise parametric form. This formulation also permits an intuitive implementation of

either instrument. Section 3 briefly returns to the general model and is devoted to proving

the existence and implementability of Responsive Quotas and Endogenous Taxes generally.
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Let marginal benefits and costs in period t be of the form

B′t(qt) = p∗ − β(q̃t − q∗) + θt, (3)

C ′(q1 + q2) = p∗ + γ(q̃1 + q̃2 −Q∗). (4)

Note that we take the average of production qt for cumulative production Q. This adaption

facilitates a common interpretation for marginal costs γ independent of the number of

periods (see Section 2.8).

For convenience, we normalize our notation such that variables qt and pt denote

deviations from the ex-ante expected optimum: pt ≡ p̃t − p∗, and similarly for qt ≡ q̃t − q∗.
In a competitive market, production is so allocated that prices satisfy:

pt = −βqt + θt, (5)

which is a first-order condition for profit-maximization by firms.

For simplicity, we start with the 2-period case. We assume that fundamentals θt follow

an AR(1) process according to:

θ2 = αθ1 + µ, (6)

with commonly known α ∈ [−1, 1] and µ white noise, so that σ2
2 = α2σ2

1 + σ2
µ, and

ρ = ασ1/σ2.

2.4 Classic Banking and the Waste of Information

Before delving into our new instruments, we quickly revisit a standard policy for dynamic

cap-and-trade systems: banking (and borrowing). Under such a policy, the planner

allocates an amount of emissions allowances to the market in each period but is lenient

with respect to periodic compliance, as long as aggregate compliance is safeguarded

(Hasegawa and Salant, 2014). This is called banking or bankable quantities because unused

allowances can be “banked” for future use. In our notation, the planner sets Q = 0, the

ex ante expected optimal stock of emissions, while firms choose their periodic emissions

levels qt subject to the constraint that Q = q1 + q2. Since the market is still free to choose

q1 = q2 = 0 but is not required to do so, a basic argument establishes right away that

banking always outperforms fixed periodic quantities.

Banking contains information. The decision to use an extra emission allowance in

one period at the cost of emissions in the other signals some of the market’s private

information to the planner. To see why, consider the following simple example. Let market
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fundamentals be imperfectly persistent over time, i.e. α < 1, and assume that firms decide

to bank a positive amount of allowances for use in the second period, i.e. q1 < 0. The

planner then learns that θ1 < 0: firms maximize expected profits, which means emissions

in each period are chosen so that p1 = Ep2, or θ1 − βq1 = αθ1 − βq2, which (for q2 = −q1)
is consistent with q1 < 0 if and only if θ1 < 0.

But if θ1 < 0, the initial (aggregate) allocation of Q = 0 allowances is too loose and the

planner knows it. After the first period market has cleared, the planner who implements a

pure banking policy is stuck with a known-to-be inefficient allocation, forced to disregard

the valuable information that the market’s banking decision has made readily available.

Surely the planner can do better?

2.5 Responsive Quotas

We first develop our optimal pure quantity instrument. This instrument resembles the

many cap-and-trade systems operative across the globe to reduce greenhouse gas emissions

(including EU ETS, RGGI, UK ETS, Chine ETS, South-Korean ETS, California ETS),

though with an important modification: new permit injections are a function of the

outstanding amount of allowances banked. We call this policy Responsive Quotas.

Starting from classic cap-and-trade, we show how the planner can construct a policy

that filters all private information about fundamentals from the market and, exploiting that

firms maximize profits and anticipate the planner’s response to any observed first-period

behavior, implements the ex post efficient level of emissions in the first period. Formally,

this instruments yields the following welfare maximization program:

max
q1,q2

E1W (q1, q2), (7)

that is, emissions in both periods are determined only after market fundamentals in the

first period are observed by the firms. Much different from classic banking, the total cap

on emissions is endogenous to market fundamentals as revealed through banking under

a Responsive Quotas regime. We may therefore define the planner’s policy-response R

such that the Q = R(q1), i.e. the function R translates first-period emissions q1 into an

endogenous aggregate cap on emissions Q. The problem of our planner is then to find an

optimal response function R.

Since firms maximize expected profits, after observing θ1 they will choose q1 such that

p1 = E1p2, or θ1−βq1 = αθ1−β(R(q1)− q1), which uses that firms anticipate the planners

policy of setting Q = R(q1) and the AR(1) development of market fundamentals. The
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planner, in turn, wants to maximize welfare and therefore equates (expected) marginal

benefits to marginal climate damages, given by γ(q1 + q2) = γR(q1). An optimal response

function R∗ therefore solves:

θ1 − βq1 = αθ1 − β(R∗(q1)− q1) = γR∗(q1), (8)

for all first-period fundamentals θ1. See Section 3 for the existence result of an optimal

response function R∗ for general costs and benefits. In our linear model, the optimal

response function R∗ specifies a simple linear relationship:

Q = δ∗q1, (9)

where δ∗, the optimal response rate, is given by:

δ∗ :=
Q

q1
=

(1 + α)β

(1− α)γ + β
. (10)

Note that the response of cumulative allowances equals the injection of allowances in the

second period. Looking at (9), Repsonsive Quotas coincides with a standard banking and

borrowing policy when δ∗ = 0. From (10), this will be the case only if marginal damages

rise very sharply with emissions (γ →∞) or if marginal benefits are constant (β = 0). In

all other cases, Responsive Quotas strictly outperforms standard banking and borrowing.

The optimal response rate is increasing in the persistence α of market fundamentals.

The more fundamentals are expected to persist, the likelier it becomes that an increase in

the marginal value of emissions in the first period is matched in the second. If α = −1,

fundamentals are perfectly negatively correlated, and any first-period decrease in demand

offsets an equal increase in second-period demand; there is no reason to adjust the cap,

δ∗ = 0. At the other extreme, if fundamentals are perfectly and positively correlated, a

first-period decrease in demand is matched by an equal decrease in second-period demand;

the adjustment of the cap doubles the observed adjustment of first period demand, δ∗ = 2.

If we plug the optimal R∗ (or δ∗) back into the planner’s welfare maximization problem,

we see that a Responsive Quotas policy forces profit maximizing firms to choose first- and

second-period emission levels that are ex post efficient with respect to first-period market

fundamentals. By exploiting rational firms’ anticipation of the planner’s policy updating

through R∗, it is almost as though the first period is retro-actively regulated, after it

has cleared. This is also evidenced by the expected welfare losses under an Responsive

Quotas policy relative to the ex post social optimum, which derive solely from unforeseen
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Figure 1: Optimal Response Rate δ∗, for different ratios γ/β, dependent on the correlation
between fundamentals α.

innovations in second-period market fundamentals:

EWOR − EWRQ =
1

4

1

β + γ
σ2
µ. (11)

We conclude our discussion of Responsive Quotas with two key observations. First,

depreciating or topping up privately banked allowances à la Kling and Rubin (1997) and

Yates and Cronshaw (2001) will not work for a pure stock externality. The stabilization

rate δ∗ cannot be interpreted as an intertemporal trading ratio for emission allowances. An

efficient policy lets firms internalize the marginal damage caused by its emissions. But for

a stock externality, the marginal damage is the same in each period. Firms’ decisions to

bank allowances should therefore be driven exclusively by (expected) market fundamentals.

An intertemporal trading ratio different from 1 distorts this tradeoff.

Second, a direct comparison of our Responsive Quotas with Pizer and Prest’s (2020)

optimal dynamic quantities is not necessary. Our approach has been constructive: we

let the structure of our problem dictate the ideal quantity instrument. The instrument

implements first-best emission levels in both periods if there are no innovations (i.e. µ = 0)

in market fundamentals. If Pizer and Prest’s flow externality instrument were optimal

for stock externalities as well, our method would have reproduced it. Since it did not,

Responsive Quotas outperform Pizer and Prest’s quantity instrument for regulating stock

externalities (and theirs outperforms Responsive Quotas for flow externalities).

Our Responsive Quotas policy is somewhat similar to the workings of the EU’s Emissions
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Trading System since its 2018 reform.4 A crucial aspect of the EU ETS post-reform is

that the supply of new allowances is endogenous to the amount of outstanding, or unused,

allowances held by the market. When this “bank” exceeds the threshold of 833 million

allowances, a pre-defined percentage of the total number of allowances in circulation is

not issued but instead placed in the Market Stability Reserve (MSR); if, in any year,

the MSR contains more allowances than were auctioned in the previous year, the excess

is permanently canceled. Thus, the EU ETS adjusts its cumulative cap in response to

emissions/banking decisions by firms. Despite this general similarity, though, there are

at least two important differences between a Responsive Quotas policy and the workings

of the EU ETS. First, Responsive Quotas are continuous in emissions/banking (see (9))

whereas the EU ETS by construction operates in a discrete way. Second, the cumulative

cap can adjust both downward and upward under a Responsive Quotas policy; in the EU

ETS, the cumulative cap can be tightened only.

2.6 Endogenous Taxes

Responsive Quotas is the optimal quantity instrument to regulate a pure stock externality.

We can similarly devise an optimal price policy. This is the exercise undertaken here. We

call our new instrument Endogenous Taxes.

If the planner taxes emissions at a rate of p1 in the first period, then after observing θ1

profit-maximizing firms choose q1 so that p1 = θ1−βq1. Since the chosen level of emissions

reveals first-period market fundamentals θ1, the planner can adjust the second-period

tax according to some tax-response function p2 = T (q1). As for Responsive Quotas,

the planner’s problem is to find an optimal tax-response function T ∗ that maximizes

welfare conditional on first-period market fundamentals θ1. In our model’s language, the

tax-response function T ∗ should implement the solution to:

max
p1,p2

E1W (q1(p1), q2(p2)), (12)

In our linear model, the optimal tax-response function T ∗ is linear with slope τ ∗:

p2 = τ ∗q1. (13)

But, to implement the best price instrument, the first-period price must autonomously

adjust to the fundamentals θ1, so that the optimal first-order condition p1 = E1p2 is

4To be more precise, the reform was agreed upon in 2018; it will be operative as of 2021 only.
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satisfied. The regulator can achieve this feat by allocating allowances, fixing the second-

period price to its optimal level based on its first-period information, and let free banking

and borrowing link the markets. A recursive tax policy cannot reach this outcome, which

is why we label it ‘Endogenous Taxes’. Under this construction, the optimal price response

becomes

τ ∗ =
(1 + α)βγ

(1− α)γ + β
. (14)

Upon closer inspection of (10) and (14), it turns out the Responsive Quota and Endogenous

Taxes instrument are fundamentally related. We observe that

τ ∗ = γ · δ∗. (15)

The normalized (i.e. unit-less) optimal updating rule τ ∗/γ coincides with δ∗, the optimal

stabilization rate for Responsive Quotas. While perhaps surprising at first, this is in fact

intuitive. If first-period emissions are q1, then the aggregate cap is adjusted to δ∗q1 under a

RQ regime, and the adjustment of marginal damages is therefore γ(δ∗q1). By construction,

this response is efficient in expectations, so ∆MB1 = ∆E1MB2 = ∆MC = γδ∗q1, i.e

marginal benefits in the first period equal expected marginal benefits (no innovations) in

the second period, which equal marginal costs. But if ∆MB2 = γδ∗q1 is in expectations

efficient, then a price instrument should tax second-period emissions at a rate p2 = γδ∗q1

also. Since Endogenous Taxes is defined as p2 = τ ∗q1, see (13), it follows that a welfare-

maximizing planner chooses τ ∗ = δ∗ · γ.

The expected welfare losses under an Endogenous Taxes regime derive solely from

unforeseen innovations in the second period:

EWOR − EWET =
1

4

(
γ

β

)2
1

β + γ
σ2
µ (16)

Note that our approach has been constructive: we let the fundamentals of our problem

dictate the ideal price instrument. If Heutel’s (2020) Bankable Prices were the optimal

price instrument for stock externalities as well, our method would have told us so. Since

it did not, Endogenous Taxes outperform Heutel’s Bankable Prices for regulating stock

externalities. Another way to see this to observe that Endogenous Taxes implements the

same price in both periods for any innovation in fundamentals, and first-best emission

levels in both periods if there are no innovations in market fundamentals. Bankable Prices

does not preserve those two properties, which are efficient for stock externalities since

marginal damages are period-independent.
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2.7 Prices vs. Quantities

If there are no innovations in second-period market fundamentals, both Responsive Quotas

and Endogenous Taxes implement the first best level of emissions in either period and

neither instrument is favored over the other (Montgomery, 1972). When second-period

innovations are possible, the instruments only deviate with respect to the effect of these

innovations in the second period. The relative performance of our instruments is therefore

determined solely by how unforeseen second-period fundamentals affect emissions in the

second period. This boils down to the classic choice problem studied by Weitzman (1974).

Proposition 1 (Weitzman for Stock Externalities). Endogenous Taxes outperform Re-

sponsive Quotas in terms of welfare if and only if β ≥ γ:

EWET ≥ EWRQ ⇐⇒ β ≥ γ. (17)

For constant marginal damages, γ = 0, the first best is relatively straightforwardly

implemented by setting the price to match those. When knowledge about the true marginal

damages evolve over time, a generalized version of the Endogenous Taxes policy uses all

information available to the market to set the market price at the expected value for

marginal damages, at each point in time. Importantly, a stock externality still requires

that current prices equal expected prices, which is the core property of Endogenous Taxes

not upheld by other instruments in the literature.

The jury is still out whether climate damages are convex (γ > 0) or proximately linear

(γ = 0) in greenhouse gas emissions.5 In either case, however, Endogenous Taxes is favored

over Responsive Quotas if the number of periods N becomes large, as we see below.

2.8 A Finer Grid

Increasing the number of periods to N > 2, we also increase the number of market opera-

tions that can be regulated, effectively using each trading opportunity as an instrument.

Much like in the two-period model, this allows the planner in every period but the last

to implement emission levels that are first best given that period’s market fundamentals.

With more and more periods, the relative effect of the final period (where asymmetric

information continues to plague the planner) on welfare becomes smaller and smaller and

the welfare performance of our instruments increases.

5See for example Schlenker and Roberts (2009) and Dietz and Stern (2015), who argue there are strong
non-linearities, versus Burke et al. (2015), who argue that damages are at most linear.
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Consider a time window of unit length, t ∈ [0, 1], divided in N periods of equal duration

ε = 1/N , so that the nth period (n ∈ 1, ..., N) covers the interval [(n− 1)ε, nε]. Benefits

and costs are given by6

B′n = θn − βqn, (18)

C ′ = γQ =
γ

N

N∑
n=1

qn, (19)

while demand shocks follow the AR(1) process

θn = α1/(N−1)θn−1 + µn (20)

with θ1 ∼ N(0, σ) and µn ∼ N(0, (1−α2/(N−1))1/2σ) iid so that ex-ante demand uncertainty

is independent of the grid, ∀n : θn ∼ N(0, σ/N), and α measures the last-period demand

shock correlation to first period demand shock: E1θN = αθ1.

To see how well our instruments can do, consider again the Optimal Response discussed

in Section 2.2, i.e. the hypothetical policy where the planner chooses qt only after observing

θt.
7 The Optimal Response turns out to provide a useful benchmark for instrument

performance since, as we show, the difference in welfare between either Responsive Quotas

or Endogenous Taxes and the Optimal Response becomes vanishingly small if there are

many periods. This reminisces the result in Roberts and Spence (1976) and Weitzman

(1978), who show that one can approximate the environmental marginal damage curve

arbitrarily closely by combining an increasing number of specific quantity and price

instruments. A formal characterization of the Optimal Response is given in the Appendix.

Yet while it is somewhat intuitive that welfare losses become vanishingly small with

increasingly fine grids, we establish a substantially stronger result: Endogenous Taxes

approaches the Optimal Response welfare level for an increasingly fine grid of trades

two orders of magnitude faster than Responsive Quota. Let WOR
N −W i

N be the welfare

losses under policy i compared to the Optimal Response with N regulatory periods. Our

interest is primarily in the performance of our new instruments Endogenous Taxes (ET )

6To facilitate the interpretation, we change from damages depending on cumulative emissions Q = q1+q2
(as in the previous section) to dependence on average emissions. This implies that the γ in the formulas
for the N=2-period model is twice as large as the γ in the 2-period model of the previous section.

7In this N -period model, the Optimal Response is defined as:

max
q1

E1 max
q2

E2 · · ·max
qN

ENW (q1, q2, · · · , qN ; θ1, θ2, · · · , θN ).
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and Responsive Quotas (RQ). Because of its widespread occurrence in emission trading

systems, we also include classic banking (B, see subsection 2.4) in the comparison.

Theorem 1. Let N denote the number of periods. For sufficiently large N , polices are

strictly ordered OR � ET � RQ � B. The welfare gap between the best possible allocation

OR and the policies decreases with N according to

EWOR − EWET = O(N−4), (21)

EWOR − EWRQ = O(N−2). (22)

That is, Endogenous Taxes approaches the Optimal Response welfare level for an increasingly

fine grid of trades two orders of magnitude faster than Responsive Quota. The welfare loss

associated with Standard Banking does not vanish for many periods.

2.9 Implementation

We discuss possible approaches to implement our instruments here.

Responsive Quotas can be implemented by means of a cap-and-trade system where

new allowances are periodically injected. The planner is lenient with respect to periodic

compliance, but aggregated over all regulatory periods firms must comply with their

allocations. Periodic lenience can be achieved by allowing firms to bank and borrow

emission allowances between periods, much like many emissions trading systems operative

today do. The difference between cap-and-trade with banking and Responsive Quotas is

that the number of new allowances injected in any given period becomes a function of

the amount of banked allowances under a Responsive Quotas regime. Qualitatively, this

implementation of Responsive Quotas comes remarkably close to the European Union’s

Emissions Trading System after its 2018 revision (Perino, 2018; Gerlagh and Heijmans,

2019).

Endogenous Taxes, though a pure price instrument, can be implemented by the same

cap-and-trade system as Responsive Quotas, with the exception of the last period when

the hard cap on emissions is abandoned and allowances are auctioned for a fixed price.

The final-period auction price depends on cumulative surrendered allowances.

It may be puzzling that a pure price instrument is implemented, to a substantial extent,

by a cap-and-trade system in all but the last period. We exploit one of our key results

here: both Responsive Quotas and Endogenous Taxes implement Optimal Response (no

asymmetric information) emissions levels in all but the final period. Hence, for all periods
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up to the last these instruments are essentially equivalent. The only difference arises in the

last period, where our proposed implementation of an Endogenous Taxes regime indeed

deviates from a pure Responsive Quotas policy by taxing emissions.

Importantly, the fact that Endogenous Taxes can be implemented by a combination of

Responsive Quotas and a final-period tax does not mean it is a hybrid instrument. From

the very definition, Endogenous Taxes is a pure price instrument, as it does not set any

quantity constraints.

3 The General Case: Two Existence Results

In the preceding analysis, we develop our new instruments for the case of linear-quadratic

costs and benefits. We did so for the ease of exposition. In this section, we briefly define

the most general versions on Responsive Quotas and Endogenous Taxes. We then show

that these general instruments can be implemented for any concave benefits and convex

costs. To that end, we first need to give a general characterization of an instrument.

We characterize an instrument as the choice of policy variables for both periods,

x1, x2 with x = (x1, x2), such that they maximize expected welfare given an optimization

program, where “given” means “for fixed points in time at which x1 and x2 are determined”.

Formally, an instrument implements the solution to:

max
x1

Et1 max
x2

Et2W (q̃1(x), q̃2(x); θ1, θ2), (23)

where t1 (t2) is the point in time at which x1 (x2) is decided upon.

In this characterization, the defining element of any price or quantity instrument is the

timing at which its levels are set, indicated in (23) by the subscripts 0 ≤ t1 ≤ t2 ≤ 2 of

the expectations operators. When ti = 2, the choice of policy variable xi is decided after

all information (θ1 and θ2) is collected and we can omit the expectations symbol. When

ti = 1, xi is determined after θ1 is observed but before θ2 is observed, while ti = 0 implies

choosing xi before any information is revealed.

With the general characterization (23) of an instrument in mind, we recall that our

optimal pure quantity instrument Responsive Quotas implements (7), i.e. it fixes q2 after

q1 has been realized. Thus we defined a response function R such that:

Q = R(q1). (24)

The defining characteristic of such a response function is that, by making second period
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quantities a function of first period emissions, it lets firms choose q1 while knowing how

this will affect q2, their allocation in the second period. A smart choice of R therefore

tries to set q2 in such a way that firms choose both q1 and q2 = R(q1)− q1 optimally in

light of the first-period fundamentals (θ1). If such a R can be found, it implements the

solution to (7). For the case of linear marginal costs and benefits, we saw in Section 2.5

that an optimal R∗ implementing (7) exists. Remarkably, one can show that this result

generalizes: response-function R implementing the solution to (7) exists for any concave

benefits and convex costs.

Theorem 2. For any concave benefits Bt and convex costs C, there exists an optimal

response function R∗ that implements the solution (7).

Similarly to Responsive Quotas, Endogenous Taxes is defined as the instrument that

implements (12). It fixes the emissions tax in both periods after first-period market

fundamentals are realized. We defined a tax-response function T which sets prices in the

second period in response to emissions in the first:

p2 = T (q1). (25)

Section 2.6 illustrated that a policy-response function T ∗ implementing Endogenous Taxes

can be found in a model with linear marginal benefits and costs. Theorem 3 establishes

that such a T ∗ can be found for all concave benefits and convex costs.

Theorem 3. For any concave benefits Bt and concave costs C, there exists an optimal

response function T ∗ that implements the solution (12).

4 Discussion and Conclusions

4.1 Contributions and Limitations

This paper makes several contributions. We extend a recently emerging literature on

the choice and refinement of dynamic policy instruments (Weitzman, 2019; Pizer and

Prest, 2020; Heutel, 2020) to environments where pollution causes a stock, rather than a

flow, externality. Using only information on emissions readily available in the market, the

policymaker can eliminate all welfare losses deriving from uncertainty and asymmetric

information save for those caused by unforeseen (by both policymaker and firms) innovations

in the final period. The idea of using market signals to solve the asymmetric information

17



Gerlagh and Heijmans, 2021 Regulating Stock Externalities

problem links our paper to seminal contributions by Kwerel (1977) and Dasgupta et al.

(1980). In this framework, we establish a strong case for price-based regulation when

there are many opportunities to learn and update the policy: a well-designed tax scheme

converges to the optimal response two orders of magnitude faster than an optimal quantity-

based policy. Importantly, these results do not rely on commitment (c.f. Boleslavsky

and Kelly, 2014) – although our policies operate according to pre-specified rules, the

policymaker would have no incentive to deviate from them even if this were allowed.

Our analysis also has important limitations. The first is our simplified treatment of

dynamic stock pollution: as in Kolstad (1996), Ulph and Ulph (1997), and Gollier et al.

(2000), we assume that damages occur only at the end of the final period and ignore

intermediate damages. This assumption is restrictive compared to more general treatments

of stock externalities where the stock of pollution causes damages in each period (Newell

and Pizer, 2003; Karp and Traeger, 2021). Another limitation is our take on market

fundamentals: we assume that if a deviation from ex ante expected emissions occurs, then

this must be caused by a shock that happened in the first period. In practice, it is perfectly

possible that firms instead respond to an anticipated future shock (Gerlagh et al., 2020) –

when this happens, our policies are not optimal and emissions might increase whereas a

decrease would be optimal or vice versa (this possibility is ruled out when updating the

cap based on observed prices rather than emissions). A more complete theory of stock

externality regulation should be robust to both types of shock. Lastly, we assume that the

policymaker only uses information on emissions to update the cap or carbon price. For a

model of cap-updating on the basis of price information, see Karp and Traeger (2021).

More generally, a critical note pertaining to both this paper and the broader literature

concerns the way it models informational frictions. Although many papers, including

ours, address policy design and performance in environments with “uncertainty”, still

much more is assumed to be known than unknown. In most models, when observables

such as emissions deviate from planners’ expectations the only possible explanation is an

unexpected “shift”, or shock, in the intercept of the marginal abatement cost function.

While there is little doubt such uncertainty may be relevant, many other equally reasonable

explanations are – often implicitly – ruled out. Why would a policymaker, though unaware

of the intercept, be perfectly informed about the slopes of firms’ marginal abatement costs

(as an exception to this rule, Hoel and Karp, 2001, study slope uncertainty)? Why would

the persistence and variance of abatement cost shocks be known with full certainty? These

and related questions motivate the study of policy design under deep or fundamental

uncertainties. The development of such a theory is left for future work.
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4.2 Policy Implications

Despite its limitations, our model generates several insights for climate policy. First, an

efficient policy (whether a cap on emissions or a carbon tax) adjusts in response to learning

over time. This conclusion supports a key message of the recent literature on dynamic cap

and trade schemes (Pizer and Prest, 2020; Karp and Traeger, 2021). The reason is quite

intuitive: an optimal policy maximizes the total benefits due to emissions minus the costs

of climate change. When over time the planner learns new information about benefits, it

will likely turn out that the initial cap or tax was set suboptimally; adjustments are then

called for.

Second, the exact nature of an externality is fundamental to policy design. The ordering

of identical instruments may (partially) reverse between stock and flow externalities (c.f.

our results versus Weitzman (2019)). Relatedly, whether or not a cap on emissions can, in

an efficient policy, be endogenized through an “interest rate” on banked allowances (Kling

and Rubin, 1997; Yates and Cronshaw, 2001) depends crucially on the kind of externality

considered. This observation illustrates that policymakers should carefully consider the

dynamics of the concrete problem at hand before taking up policies suggested by the

literature; policies that works just fine for flow externalities may be a bad choice when

regulating stock externalities (and vice versa).

Third, when there are many periods, learning is fast, and the policymaker uses

information one quantities (e.g. emissions) to update its policy, a tax performs far better

than a cap and trade scheme. Dynamically updated taxes may be a highly efficient policy

solution to climate change and other stock externalities.

4.3 Concluding Remarks

We study the optimal regulation of pure stock externalities in environments when firms

possess private information and the future is partly unpredictable. In its most general

form, we define regulation as the implementation of a welfare maximization problem.

This constructive approach yields two policies, Responsive Quotas and Endogenous Taxes,

each of which always exists and is strictly welfare superior among all pure quantity and

price instruments, respectively. Both instruments implement welfare levels that converge

(faster than standard policies including recursive quota and recursive taxes) to the Optimal

Response, the hypothetical level of welfare attained when a planner is informed about

market fundamentals at the same time firms are. Our instruments therefore allow the

planner to regulate the market almost as though there were no asymmetric information.
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This means our new instruments could yield substantial gains in social welfare compared

to currently existing policies, for example in the mitigation of CO2 emissions. With regard

to the latter application, we suggest fairly simple ways in which our instruments can be

implemented as an adaptation of existing cap-and-trade policies. Given the abundance

of cap-and-trade programs across the global – think of the European Unions Emissions

Trading System (EU ETS), the Regional Greenhouse Gas Initiative, the Chinese national

carbon trading scheme, the UK ETS, California’s cap-and-trade program, and South-Korea

ETS – our results may provide useful guidance in the design and adaption of policies to

mitigate climate change.
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A General Model Existence of Response Functions

that support Theorems 2 and 3

Proof. We only need to establish that information in q1 and θ1 are identical, that is, that

q1 is monotonic in θ1. We prove this for Responsive Quotas explicitly. The same algebra

can be applied to Endogenous Taxes.

Totally differentiating the condition that prices are constant in expectations (i.e.

realized first-period prices are equal to expected second-period prices), we obtain:

B′′1dq1 + dθ1 − E1B
′′
2dq2 − E1dθ2 = 0. (26)

Similarly, when we totally differentiate the first-order condition that prices in expectations

equal marginal costs, we find:

B′′1dq1 + dθ1 − C ′′(dq1 + dq2) = 0. (27)

We can multiply (26) by C ′′ and (27) by E1B
′′
2 and subtract one from the other, to obtain:

[B′′1 · C ′′ −B′′1 · EB′′2 + C ′′ · E1B
′′
2 ]dq1 + [C ′′ − E1B

′′
2 ]dθ1 − C ′′E1dθ2 = 0 (28)

This in turn can be rewritten to yield:

E1dθ2
dθ1

=
C ′′ − E1B

′′
2

C ′′
+
B′′1C

′′ −B′′1E1B
′′
2 + C ′′E1B

′′
2

C ′′
dq1
dθ1

(29)

Since B′′t < 0 and C ′′ > 0 by assumption, the first term on the RHS is larger than one:

C ′′ − E1B
′′
2

C ′′
> 1. (30)
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Moreover:
B′′1C

′′ −B′′1E1B
′′
2 + C ′′E1B

′′
2

C ′′
< 0. (31)

Clearly, then, if E1dθ2/dθ1 ≤ 1, it is immediate that dq1/dθ1 > 0 and any response q1 + q2

dependent on θ1 can be written implicitly as dependent on q1. Q.E.D.

B Linear Demand, N periods

In this section we describe in detail the allocations brought about by the various policies,

and the welfare gaps. The elements of Theorem 1 are proven as part of the policy

characterization.

B.1 One-period model for reference

It will turn out convenient, for the N-period model, to have the one-period Weitzman

(1974) model at hand. In the competitive market, prices satisfy:

p = −βq + θ. (32)

The Social Optimum is characterized by:

pSO =
γ

β + γ
θ, (33)

qSO =
1

β + γ
θ (34)

When the regulator sets quota at its ex-ante optimal level qQ = 0, prices given by market

equilibrium (32), pQ = θ, and welfare losses are given by

EW SO − EWQ = E
[

1

2
(pSO + pQ)(qSO − qQ)− 1

2
γ(qSO + qQ)(qSO − qQ)

]
(35)

=
−1

2

1

β + γ
σ2 (36)

When the regulator sets the tax at its ex-ante optimal level pP = 0 quantity follows,

qP = θ
β
. Welfare losses are given by

EW SO − EW P = E
[

1

2
(pSO + pP )(qSO − qP )− 1

2
γ(qSO + qP )(qSO − qP )

]
(37)
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=
−1

2

γ2

β2(β + γ)
σ2 (38)

To check consistency, note that we reproduced the result by Weitzman (1974) that

EWQ > EW P iff β < γ.

B.2 Banking with fixed cumulative supply

Cumulative Quota solves the set of equations EmB′m+1 = EmB′m+2 = ... = EmB′N , with

EmB′n = α
n−m
N−1 θm − βEmqn (39)

We sum all equations, divide by N , exploit 1
N

∑N
n=m+1 qn = −Qm, write EmpN for expected

marginal benefits. Combining with the price equation (5), we find

pm =
β

xm
Qm−1 +

Am
xm

θm (40)

qm =
−1

xm
Qm−1 +

1

β

(
1− Am

xm

)
θm. (41)

Note that the allocation characterization for Cumulative Quota converged to Optimal

Response for γ →∞. As CQ does not adapt cumulative production to observed demand

changes, it is uniformly more costly than Optimal Response: EWOR − EWBanking = O(1).

B.3 Proof of Theorem 1

B.3.1 Optimal Response

The Optimal Response is defined through the competitive equilibrium condition ∀m =

1, ..., N : pm = θm − βqm, rational expectations ∀1 ≤ m ≤ n ≤ N : Empn = pm, and

expected efficiency pm = γEmQ. These properties enable us to construct the dynamics

for prices and quantities. Optimal Response solves the set of equations B′m = EmB′m+1 =

EmB′m+2 = ... = EmB′N = EmC ′, where competitive markets ensure B′n = pn:

EmB′n = α
n−m
N−1 θm − βEmqn (42)

EmC ′ = γQm +
γ

N

N∑
n=m+1

Emqn (43)
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for Qm =
∑m

n=1 qn/N . We multiply the first equation by γ
Nβ

, sum over all curent plus

future n = m, ..., N , add the second equation, write EmpN for expected marginal benefits

and costs, to get: (
1 +

γ

β
xm

)
EmpN = γQm +

γ

β
Amθm (44)

where xm = (N − m + 1)/N is the share of remaining periods (including period m),

and Am =
∑N

k=m α
k−m
N−1 /N is the cumulative increase in current plus future marginal

productivity induced by θm. Combining with the price equation (5), is rewritten as

pm =
βγ

β + γxm
Qm−1 +

γ

β + γxm
Amθm (45)

qm =
−γ

β + γxm
Qm−1 +

1

β

(
1− γ

β + γxm
Am

)
θm, (46)

which gives the recursive solution, pORm (Qm−1, θm), qORm (Qm−1, θm).

Note that because the OR does not equalize prices over periods, and thus the prices

follow a random walk, there is a non-vanishing welfare loss relative to the Social Optimum:

EWOR − EWCQ = O(1).

B.3.2 Responsive Quota

Responsive quota has the same allocation as OR for m = 1, ..., N − 1, but for the last

period

pN = pN−1 + µN , (47)

qN =
α

1
N−1 θN−1 − pN−1

β
. (48)

At the last period, there is history of cumulative emissions QN−1, an expected demand

increase α1/(N−1)θN−1, and a final demand shock (1 − α2/(N−1))1/2µN . The Optimal

Response fully adapts quantities and prices (qN , pN) to the new information µN . The

Responsive Quota fixes last-period quantities qN to the expected level. Thus, in the

multi-period model, welfare losses of Responsive Quota compared to the Optimal Response

can only arise in the last period. Formally, as (QOR−Q) = (qORN − qN )/N the welfare gap
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becomes (where we leave the RQ superscripts):

EWOR − EW = E
[

1

2N
(pORN + pN)(qORN − qN)− γ

2N
(QOR +Q)(qORN − qN)

]
(49)

Since E(qORN − qN) = EN−1(qORN − qN) = 0, we can multiply it by a constant EN−1pORN ,

EN−1pN , EN−1qORN or EN−1qN , keeping zero. Also, when it is multiplied by Q, the part

multiplied by QN−1 is zero and only the interaction with qN remains. Thus, the above

equation transforms into

EWOR − EW = E
[

1

2N

(
(pORN − EN−1pORN ) + (pN − EN−1pN)

)
(qORN − qN)

]
(50)

− E
[ γ

2N2

(
(qORN − EN−1qORN ) + (qN − EN−1qN)

)
(qORN − qN)

]
, (51)

where the division by N2 in the second line appears because of production aggregation

specified in (19). On closer inspection, the above resembles exactly the first line of (35).

That is, welfare losses of Responsive Quota relative to the Optimal Response equal those

of Quota relative to the Social Optimum in a one-period model with noise µN , marginal

costs slope γ/N , and divided by N to correct for the shorter length of period. Thus, we

can take the second line of (35) and transform it into

EWOR − EWRQ =
−1

2N(β + γ/N)
(1− α2/(N−1))σ2 (52)

In the limit, we have N(1− α2/(N−1))→ −2 ln(α), so that

lim
N→∞

N2(EWOR − EWRQ) =
− ln(α)

2β
σ2. (53)

Another way to write this is EWOR − EWRQ = O(N−2), the second result of Theorem 1.

B.3.3 Endogenous Taxes

Endogenous Taxes has the same allocation as OR for m = 1, ..., N − 1, but for the last

period we have pN = pN−1 and

qN =
θN − pN−1

Nβ
. (54)
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To determine the welfare losses relative to OR, we follow the same argument as for RQ.

OR optimally determines last-period allocation qN , pN , while the Endogenous Taxes fixes

last-period prices pN to the expected level. Thus, welfare of Endogenous Taxes compared

to the Optimal Response has the same welfare losses as Prices in the one-period model

(37), but with γ replaced by γ/N , and divided by N to account for the period length:

EWOR − EWET =
−γ2

2N3β2(β + γ/N)
(1− α2/(N−1))σ2. (55)

In the limit, this gives us

lim
N→∞

N4(EWOR − EWET ) =
−γ2 ln(α)

2β3
σ2, (56)

restated as the first result of Theorem 1: EWOR − EWET = O(N−4).
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