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Abstract

We study pandemic policy in a global game. Independent regions face the outbreak
of a disease and can exert effort to control it. If the disease is infectious, it will be
controlled only if sufficiently many regions exert effort. Regions thus face a coordination
game which, in the well-studied case of perfect information, has multiple Nash equilibria.
We show that even a vanishing amount of uncertainty about fundamentals of the game
forces selection of a unique equilibrium. In well-identified cases, a pandemic occurs even
though it is inefficient and could be avoided. Harmful diseases are less likely to become
an pandemic while diseases which require greater cooperation have a larger chance to
go uncontrolled. A higher cost of effort increases the probability of a pandemic and
regions whose actions exhibit stronger spillovers have a greater influence on the limiting
equilibrium. Given the possibility of an inefficient but rational pandemic, we also
propose a novel mechanism to facilitate coordination on disease control. In particular,
we introduce the concept of P -delegation, a kind of conditional delegation which binds
delegating regions to exert effort toward disease control if and only if at least a weighted
proportion P of all regions has delegated. We show that, for judiciously chosen P ,
P -delegation can help avoid pandemics. Our results thus suggest a way forward for the
international cooperation on disease control.
Keywords: global games, pandemics, disease eradication, privately provided public
goods
JEL Codes: I18, H41, C72

1 Introduction

Pandemics are costly. Though intuition might attribute the rise of a pandemic to mere
misfortune, that explanation leaves open the question how individual decisions affect the
likelihood of a pandemic’s onset. This paper uses game theory to study the strategic
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considerations leading up to a pandemic. Our game of imperfect information is distinct from
existing studies in the economics of epidemics that either do not use game theory (Kremer,
1996; Geoffard and Philipson, 1997; Gersovitz and Hammer, 2003), or model the problem as
a game of perfect information (Barrett, 2003). We formulate several novel insights.

Game theory provides a tool to analyze strategic interactions between rational decision-
makers. It captures the fundamentally strategic nature of disease control problems, where
any one region’s optimal course of action may well depend on what other regions are doing.
However, extant game theoretic analyses of disease control, see Barrett (2003) in particular,
tend to have multiple equilibria. Equilibrium multiplicity dwindles the predictive ability of
these models. The outcome of a game with multiple equilibria is not, a priori, determined –
there is no apparent connection between a disease’s fundamental properties and its eventual
fate. In such games, a pandemic is mere misfortune indeed.

The indeterminacy of outcomes in existing models comes about through a combination
of perfect information and the possibility of contagion. An epidemic spreads from one
region to another. Any region’s private efforts at controlling the spread of a disease thus
boost the likelihood that other regions’ private efforts are successful. This type of mutual
reinforcement, when combined with perfect information, often leads to a manifold of equilibria
and coordination failure (c.f. Van Huyck et al. (1990)).

While our game maintains the strategic nature of disease control, we study disease control
under payoff uncertainty, which makes for a global game (Carlsson and van Damme, 1993;
Frankel et al., 2003). Global games are a class of imperfect information games where players
are uncertain about some underlying fundamental of the game but receive private noisy
signals of it. In our model, regions are uncertain about the precise number of regions that
need to exert effort in order to successfully control the disease.

There are at least two reasons to consider this type of uncertainty. First, pandemics have
a highly multi-dimensional (negative) impact on society, making a comprehensive idea of
their costs hard to grasp. The costs extend far beyond the mere expenditures on health
care or illness-related loss of productivity (Shastry and Weil, 2003). They can lead to civil
conflict (Cervellati et al., 2017, 2018) and cause impaired development in youth (Bleakley,
2003; Coffey et al., 2017). An pandemic may call the government’s legitimacy into question
(Flückiger and Ludwig, 2019) and can even affect a country’s institutions (Acemoglu et al.,
2001, 2003). Second, the epidemiological literature suggests that new diseases – by their
nature subject to many uncertainties – will appear increasingly often in the near future (see
Rappuoli, 2004, for a comprehensive review). A complete understanding of disease control
under incomplete information is therefore necessary to inform future health policy.

Even a vanishing amount of uncertainty leads to selection of a unique equilibrium in
our disease control game. While equilibrium uniqueness is well-established for global games
generally, see especially Frankel et al. (2003), it is a new insight in the literature on pandemics.
The advantage of a unique equilibrium over multiple equilibria is that it allows for sharper
predictions. In our global game, a more harmful disease is less likely to become an pandemic.
In terms of welfare, an pandemic can occur even though this is inefficient and could have
been avoided. These results embed well-known predictions from the epidemiological studies
within a strategic framework (c.f. Capasso and Serio (1978); Epstein et al. (2008); Fenichel
et al. (2011)) and are supported empirically (Ahituv et al., 1996; Philipson, 1996). Also
intuitive, a disease that is harder to control is more likely to become a pandemic, higher costs
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of effort increase the chances of a pandemic, and regions whose effort has stronger spillovers
have a bigger impact on the limiting equilibrium of the game.

The result that regions may rationally coordinate on a pandemic calls for a coordination
mechanism. Finding a suitable coordination device is not straightforward because sovereign
regions (e.g. countries) cannot be coerced into a course of action they do not themselves wish
to take. Because of this, we take inspiration from the literature on strategic delegation and
allow regions to delegate a third-party authority to take binding decisions on the their behalf.
Strategic delegation by countries has been studied in a variety of contexts including trade
policy in customs unions (Gatsios and Karp, 1991), international climate policy (Habla and
Winkler, 2018), and the fight against terrorism (Siqueira and Sandler, 2007). However, simple
strategic delegation may not work in this context as the decision to delegate one’s choice
of effort can itself be thought of as a coordination problem. To resolve this, we introduce
the novel concept of P -delegation; like standard delegation, P -delegation lets the regions
delegate their decision-making powers to a third agents. However, the decision made by the
agent is binding if and only if sufficiently many other regions also delegated their decisions.
We show that P -delegation, given a judiciously chosen minimum participation threshold P
solves the global coordination problem and can thus help avoid pandemics.

The remainder of this paper is organized as follows. Section 2 presents the building blocks
of our model and the main results. Section 3 incorporates cooperation into the model. Section
4 concludes. The proofs of our main results are in the text and the proofs of additional results
are in the Appendix.

2 Model

There is a set N = {1, 2, ..., n} of sovereign regions, each plagued by the same infectious disease.
We follow Barrett (2003) and assume that each region i can either exert effort to control the
spread of the disease (xi = 1), or not (xi = 0), and regions choose their actions simultaneously.
The term “effort” here is understood to be an umbrella term describing any attempt toward
containment or eradication; what precisely it entails may depend on the disease in question.
We let x = (xi) denote the effort vector of all regions and X =

∑
i∈N ωixi/n, where

∑
i ωi = 1

and ωi > 0 for all i. The parameter ωi is a measure for the importance of region i’s eradication
efforts in a way we make precise below. The cost of effort to region i is denoted ci > 0. If
a region succeeds in controlling the disease, it realizes a benefit bi and bi > ci. We assume
that there is a critical mass T ∈ [0, 1] of regions such that effort is successful if and only
if X ≥ T . This captures the idea that contagious or infectious diseases can easily spread
from one region to another so that some amount of coordinated effort is required to stand a
reasonable chance toward successful control. Note that a disease is, for all practical purposes,
fully characterized by the tuple (b, c, T ), where b = (bi)i∈N and c = (ci)i∈N are vectors of
benefit and cost parameters, respectively, for all regions. We interpret the parameter T as a
measure of how difficult it is to control a disease.

The payoff to region i is given by

ui(x;T ) =

{
bi − ci if X ≥ T,

−ci if X < T,
(1)
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where we normalize the payoff to no effort (xi = 0) to 0.1

The payoff function (1) makes clear that regions have an incentive to coordinate their
efforts. To keep the example interesting, assume that ωi < T for all i. Then each region
wants to exert effort, provided the critical threshold for success T is passed. If however all
regions i believe that X < T (even counting their own effort), none want to exert effort. The
game therefore has two pure strategy Nash equilibria, one in which regions coordinate on
controlling the disease, another in which regions coordinate on not controlling the disease.

Observation 1. In the game of perfect information about (b, c, T ), if bi > ci and ωi < T for
all i, there are two pure strategy Nash equilibria, one in which xi = 1 for all i, another in
which xi = 0 for all i.

Observation 1 establishes equilibrium multiplicity in the perfect information game and is
equivalent to Barrett’s (2003) Proposition 3. Observe that a situation in which only a subset
of regions exerts effort cannot be an equilibrium, even when regions are asymmetric. Once
the critical threshold T is passed, regions that do not exert effort have an incentive to change
course and control the disease. Similarly, if the critical threshold T is not passed, those
regions that do exert effort have an incentive to not do so and save on the cost (unsuccessful)
effort.

It would seem a reasonable proposition that a multiplicity of equilibria per se is no reason
for concern. As Barrett (2003) observes, in the presence of multiple equilibria, “presumably, [...
regions] will try to coordinate on the preferred equilibrium.” Unfortunately, as we will shortly
show, the co-existence of two Pareto-ranked equilibria (such that regions might ‘choose’ the
one they prefer) is an artifact of the extreme assumption of complete and perfect information
about the game. Even minimal uncertainty about the game played leads to selection of
a unique equilibrium that generally is not the Pareto-dominant outcome of the game. A
commitment mechanism will be needed to allow regions to always coordinate on the efficient
outcome of the game; we discuss one possible such mechanism in Section 4.

3 Equilibrium selection and rational pandemics

The assumption that regions have perfect and common knowledge of the entire game is strong.
For the case of an infectious disease, it may be too strong. We therefore discuss the case of
incomplete information in this section.

Suppose that regions do not know exactly what the critical threshold T for successful
control is; that is, regions are uncertain how difficult it actually is to control the disease. Let
it be common knowledge that T is drawn from the uniform distribution on [0, 1]. Each region
i receives a private noisy signal tηi of T , given by

tηi = T + η · εi,
1The model can accommodate free-riding. Suppose a region i that does not exert effort can nevertheless

benefit from successful control (X ≥ T ); let these no-effort benefits be denoted bi. The benefit of successful
control conditional on effort is bi. If we assume that bi > bi, for example because more people will get sick
prior to eventual control in regions that do not exert effort, we can define bi := bi − bi and use the payoff
function ui specified in (1).
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where η ∈ (0, 1] is a scaling factor for the random error term εi. The distribution function of
εi is common knowledge and given by Fi with support [−1/2, 1/2] and continuous density

fi. Observe that the distribution of tεi conditional on T is given by Fi

(
tεi−T
η

)
. Let T =

[−η/2, 1 + η/2] denote the set of feasible signals a region i can receive.
A strategy si : T → [0, 1] for region i is a function that assigns to any feasible signal

tηi ∈ T a probability si(t
η
i ) with which the region exerts effort (chooses 1). A strategy profile

s = (si) is a vector of strategies for each region, and s−i = (sj)j 6=i. We say that a strategy si
is increasing if si(t

η
i ) is never decreasing in tηi . A strategy profile is increasing if it contains

only increasing strategies.
Let F η

i (T, tη; ti) denote the posterior distribution function of (T, (tηj )j 6=i) conditional on
tηi = ti. The expected payoff to region i, conditional on its signal tεi and the vector of strategies
pursued by all other regions is given by

uηi (xi, s | t
η
i ) =

∫
ui(xi, s(t

η);T )dF η
i (T, tη; tηi ), (2)

where with a slight abuse of notation we write s(tη) instead of s−i(t
η
−i).

Our solution concept is iterative strict dominance. We first eliminate all strategies that
are strictly dominated for each region. We then then eliminate a region’s strategies that are
strictly dominated if the other regions are known to only play strategies that survived the
initial elimination of strategies, and so on. See Osborne and Rubinstein (1994) for a textbook
introduction to iterative strict dominance.

Our first main result is that uncertainty about the critical threshold T leads to selection
of a unique equilibrium for the game G(η) in which each region pursues an increasing strategy.
In the limit as the noise in signals becomes arbitrarily small, the unique equilibrium strategies
converge to the same strategy for all (possibly heterogeneous) regions.

Proposition 1.

(i) There is a unique strategy profile s∗ = (s∗i ) that survives iterated elimination of strictly
dominated strategies in the game Gη. The profile s∗ = (s∗i ) is increasing. In particular,
there exists a unique b∗i ∈ (B0, B1) such that, for all i ∈ {1, 2, ..., N}:

s∗i (ti) =

{
1 if ti ≤ t∗i ,

0 if ti > t∗i .
(3)

The strategy profile s∗ is the unique Bayesian Nash equilibrium of Gη.

(ii) In the limit as η → 0, all t∗i converge to a common limit t∗ given by

t∗ =
N∑
i=1

ωici
bi
. (4)

The multiplicity of equilibria documented in Observation 1 and the literature obtains
only in the extreme case of common knowledge about the entire coordination game. Even a
vanishing amount of uncertainty leads to selection of a unique equilibrium. This uniqueness
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allows us to study the strategic behavior of regions without the ambiguity that multiple
equilibria create. Using Proposition 1, we can derive a number of intuitive comparative
statics that link a disease’s characteristics to equilibrium behavior.

Proposition 2. Consider the game Gη and let η → 0.

(i) The threshold t∗ is monotone increasing in ci, for all i;

(ii) The threshold t∗ is monotone decreasing in bi, for all i.

A higher cost of effort [benefit from control] for any region decreases [increases] the
probability that a disease gets controlled in all regions. In equilibrium, a disease will be
controlled if and only if T > t∗. Since t∗ is increasing in ci and decreasing in bi, the ex
ante (before T is drawn) probability that a disease will be controlled is decreasing in ci and
increasing in bi, for all i.

Why should the cost-benefit ration ci/bi for region i affect the decision problem of another
region j 6= i? It is intuitively clear that an increase in ci [decrease in bi] affects the decision
of region i. Suppose that, for given tηi and ci/bi, some region i is just indifferent between
exerting effort and doing nothing. Then an increase of the cost-benefit ratio ci/bi, given tηi
and the strategies pursued by all other regions, will tip i’s preference over from indifference
to not exerting effort. This affects the other regions because exerting effort is weakly more
attractive for them when region i participates compared to when it does not. Hence, regions
j 6= i too will become less inclined to control the disease, making them less willing to try and
control the disease, too.

The comparative statics in Proposition 2 may sound obvious, but we haste to add that
these results cannot be derived in a game with multiple equilibria. Indeed, as we discussed
before, in a game with multiple equilibria only additional and ad hoc requirements, imposed
by the modeler, can preempt the situation in which a disease with high cost-benefit ratios
ci/bi for all i is controlled whereas one with low cost-benefit rations c′i/b

′
i is not from being

an equilibrium outcome. Our global game of disease control instead offers a convincing
game theoretic argument, grounded in rational behavior, to prevent such counter-intuitive
situations from occurring.

Propositions 1 and 2 discuss equilibrium strategies. For practical purposes, one may
be more interested in outcomes. With a slight abuse of wording, define a pandemic as the
situation in which there is an disease in every region; hence, for a given disease (b, c, T ) a
pandemic occurs if and only if X < T . The equilibrium uniqueness established in Proposition 1
allows us to identify precise conditions under which a pandemic arises. Proposition 3 discusses
these conditions and provides details about the (possible) inefficiency of a pandemic.

Proposition 3. Consider the game Gη and let η → 0.

(i) For all T > t∗, there will be a pandemic;

(ii) For all T < t∗, there will not be a pandemic;

(iii) A pandemic is always inefficient.
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Interestingly, though all regions favor the outcome in which a pandemic is avoided to one
in which it is not, there is an entire range of diseases (all (b, c, T ) such that T < t∗) for which
rational regions will choose not to exert effort. A pandemic can hence be game theoretically
rational; not because the cost of effort is too high to warrant controlling a disease (we ruled
this out by assumption), but because the strategic uncertainty about other regions’ efforts
makes the individual gamble to control too risky in light of the coordination required. The
presumption that rational regions will coordinate on the preferred equilibrium of the game of
perfect information does not survive the addition of even vanishing uncertainty about payoffs.

The next corollary follows immediately from Propositions 2 and 3.

Corollary 1. Consider the game Gη and let η → 0. Ceteris paribus, a pandemic is more
likely if i) the disease is harder to control (T higher), ii) the benefit from successful control is
lower (b lower), and/or iii) the cost of effort toward control is higher (c higher).

If we interpret bi as a measure of how harmful a disease is, then our results suggest that
more harmful diseases are more likely to be controlled and, hence, cause fewer casualties in
equilibrium. This makes sense. Chickenpox, for example, is clearly pandemic but generally
so mild that no efforts toward eradication are currently undertaken (McKendrick, 1995).
Ebola, in contrast, is mostly restricted to West-Africa and was not allowed to spread further,
partly because it is such a damaging disease (Flückiger and Ludwig, 2019). The reason for
this discrepancy is that a more harmful or dangerous disease tend to warrant more caution.
Similar cooling effects on behavior can be observed in the reduction in crashes on a road
after speed bumps are introduced (Ewing, 1999; De Borger and Proost, 2013).

How to avoid a rational pandemic?

4 P -Delegation

The unique equilibrium identified in Proposition 1 is the only strategy vector that survives
iterated elimination of strictly dominated strategies. Being a dominance solvable game, a
simple pledge or promise by regions to always coordinate on the efficient outcome of Gη

(avoid a pandemic) cannot work: the promised strategy to always exert effort is dominated
by s∗i for each region. All regions hence have an incentive to deviate from their promise, and
this is common knowledge, so a pledge to always exert effort is incredible. Simple promises
cannot prevent pandemics.

We discuss one potential solution to overcome this problem: the possibility for regions to
delegate their decision making to a third agent who takes (binding) decisions on the region’s
behalf. We will show that classic delegation can work to help regions solve their coordination
problem, but does not have to, as the decision to delegate is itself a coordination problem.
We then introduce the novel concept of P -delegation, or delegation conditional on sufficient
participation, and derive a more positive result.

Suppose there is a higher Authority (e.g. a federal government) to which the regions (e.g.
individual states) can delegate their decision to exert effort in the face of the outbreak of a
disease. We take a somewhat extreme position and assume that the Authority will always
force the regions that delegated to exert effort. It would be reasonable to assume that the
Authority has some objective function which it aims to maximize and that this maximization
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behavior does not always lead to coordinated effort by the delegating regions. However,
we will show that even if the Authority rules in this extreme and, for individual regions,
seemingly unfavorable way, delegation by all regions – and, consequently, successful control of
any disease – can be made a dominant strategy of the P -delegation game. It follows that a
more sensible Authority will also attract full coordination on P -delegation. We furthermore
assume that the Authority observes (b, c, T ) directly; as will become clear in the argument, it
matters only for details of the analysis whether the authority observes the true T or instead
receives a noisy signal of it so we simplify notation and assume that the authority observes T
without error.

Formally, the problem is modeled as a two-stage game that we denote Γη. In stage 1 of
Γη, all regions simultaneously decide whether to delegate their decision-making powers to the
Authority. We let D ⊆ N denote the subset of regions that delegated their decision making
powers to the Authority. After stage 1, a disease breaks out, T is drawn, and stage 2 of Γη

begins. In stage 2, the non-committed regions simultaneously determine their effort choices
in the global game Gη(D) which is the global game Gη with the actions sets for all i ∈ D
reduced to {1} (by virtue of their decision to delegate). Given this setup, it is easy to see
that Gη(D) is simply a normalized version of the global game Gη for the regions who did not
delegate in stage 1, i.e. all i ∈ N \ D. We refer to the proof of Proposition 1 to establish that
in Gη(D), letting η → 0, there will be a unique and common threshold signal t∗∗(D) such
that each i ∈ N \D chooses xi = 1 if tηi ≤ t∗∗(D) and xi = 0 otherwise. If no region delegates
in stage 1, stage 2 of Γη reduces to the global game analyzed in the previous section and
t∗∗(∅) = t∗.

We first study standard delegation, i.e. delegation that is not conditional on the realization
of D. Proposition 4 shows that the possibility to delegate decision-making powers does not
solve the regions’ coordination problem. Indeed, in some sense delegation further complicates
it.

Proposition 4. Let η → 0. Both D = ∅ and D = N can be consistent with a Perfect
Bayesian equilibrium of Γη.

Proof. It is not profitable to deviate when D = N for any region i as the region will play
xi = 1 both when D = N and in the alternative situation in which D = N \ {i} and i is left
to choose. D = N is hence a Perfect Bayesian Equilibrium (PBE) of the game.

Next consider the case in which no region delegates, D = ∅. Straightforward algebra
yields that no region i has an incentive to unilaterally deviate from D = ∅ in stage 1 (given
the anticipated behavior in stage 2) if and only if

(1− ωi)t∗ − t∗∗({i})
(1− ωi)(1− t∗)

>
ci
bi
, (5)

for all i ∈ N . Hence, if (5) is satisfied then no region can gain by unilaterally deviating from
the coalition structure D = ∅, which is therefore a PBE. �

The possibility to delegate decision-making power to the Authority complicates, rather
than solves, the coordination problem regions face. The reason is that in this kind of setup,
the decision to delegate is itself coordination problem: a region will rationally want to delegate
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decision-making powers if and only of sufficiently many other regions do. Hence, simple
delegation does not solve our original coordination problem, it only adds a second one on top.

We propose P -delegation as a solution to the coordination problem inherent in standard
delegation. As before, countries once and simultaneously decide whether to P -delegate their
decision-making powers; let DP ⊆ N denote the subset of P -delegating regions. Like standard
delegation, P -delegation puts a region’s choice of effort in the hands of the Authority in a
binding way. We assume again that the Authority forces P -delegating regions to always exert
effort when a disease breaks out. Importantly, however, the Authority’s demand is binding if
and only if the minimum participation threshold P is met in the sense that

∑
i∈DP ωi ≥ P .

We denote the two-stage game with P -delegation Γη(P ).
The participation threshold P reduces the strategic risk to P -delegation in Γη(P ), com-

pared to standard delegation in Γη, since a delegating region will be bound to abide by the
Authority’s decision only when some minimum amount of coordination (X ≥ P ) is guaranteed
to be achieved. It is easy to see that for judiciously chosen P , each region expects to gain
strictly from P -delegation should the critical threshold P be met, while clearly no region
loses if the pledge to delegate is null.

Let ω = mini{ωi : i ∈ N} denote the contribution to X of the region whose effort has the
lowest spillover.

Proposition 5. Consider the Γη(P ) and let η → 0. For all P > 1 − ω, it is a weakly
dominant strategy for each region i to P -delegate in Γη(P ). In the associated Perfect Bayesian
equilibrium, all diseases will be controlled.

Proof. Let DP
−i denote the set of P -delegating regions except i. For all DP

−i 6= N \ {i}, region
i is indifferent between P -delegating and not P -delegating in stage 1 of Γη(P ) since in either
case the threshold P > 1 − ω is not passed; hence, all regions will end up being free to
choose their effort in stage 2 whether i P -delegates or not. If DP

−i = N \ {i}, there are two
scenarios. (a) If region i P -delegates we have

∑
j∈DP = 1 > P , the Authority’s call for all

regions to exert effort in stage 2 is binding and the payoff to region i is bi − ci. (b) If region
i does not P -delegate, then

∑
j∈DP = 1 − ωi ≤ 1 − ω < P and no region is bound by the

Authority’s demands. Regions hence play the global game Gη in stage, the equilibrium of
which is described in Proposition 1. The expected (before T is drawn) payoff to region i in
this game is simply (bi − ci) · Pr[T > t∗] = (bi − ci)

∑
j∈N

ωjcj
bj

< bi − ci. We conclude that

no region i is never worse off by P -delegating, given P > 1− ω, but is strictly better off in
case DP

−i = N \ {i}. It follows that P -delegation is a weakly dominant strategy in stage 1 of
Γη(P ) in the limit as η → 0. In the associated equilibrium, each region P -delegates and all
diseases are controlled as a result. �

The participation threshold P that allows P -delegation to work is akin to a “trigger law”,
i.e. a law that becomes enforced once a key change in circumstances is achieved; in this case,
that key change is the participation threshold P being passed. It seems a natural condition
in the context of independent, legally separated regions. In the European Union (EU), for
example, major decision can only be implemented after a unanimous vote by all member
states.
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5 Conclusion

This paper studies disease control in a global game. Our approach stands in contrast to the
existing game theoretic literature. While “eradication games” of perfect information have
multiple equilibria, the global game has a unique equilibrium. This primal distinction leads to
several derivative, yet important, results. First, our model can predict when an (in)efficient
pandemic occurs. Second, diseases for which the benefit of successful control is higher are
more likely to be controlled (or eradicated). Third, and paradoxically, diseases that are more
costly a priori end up being less costly to society, precisely because these get eradicated. Our
analysis is the first to embed these well-known predictions from epidemiology models within
a strategic framework.

Our results clearly demonstrate that an pandemic may occur even when this is inefficient.
One way to avoid this dismal outcome is to lower eradication costs. Another possibility is to
reduce the set of players, for example by having countries coordinate policies through more
aggregated bodies such as the European or African Unions. Third, strong social distancing
or hard border closures can contribute to contain a disease. While intuitive, extant game
theoretic models do not support these conclusions.

An alternative solution is strong ex ante cooperation (rather than aggregation) between
players. We support this claim in a dynamic extension of our static game, in which a subset
of players forms a coalition prior to the outbreak of a disease. Members of the coalition
credibly commit to exert efforts towards disease control whenever the benefit is perceived to
be sufficiently high. We show that credible commitment catalyzes coordination on eradication
efforts and decreases the likelihood of inefficient pandemics.

There are at least two ways to think about a coalition. First, as the outcome of intensive
ex ante cooperation among players. This is perhaps most intuitively, though not exclusively,
thought of as international cooperation between countries through a supra-national entity
such as the World Health Organization. Second, as a reduced-form description of a sequential
global game, where a subset of players determines its actions first, and only then do the
remaining choose theirs.

This paper offers a new perspective on the economics of disease control. Existing studies
either do not rely on game theory (Kremer, 1996; Geoffard and Philipson, 1996, 1997;
Gersovitz and Hammer, 2003; Epstein et al., 2008; Fenichel et al., 2011), or make the strong
assumption of perfect information (Barrett, 2003). Our global game incorporates the strategic
incentives underlying the spreading of a disease while taking explicit account of uncertainty.
Our results provide useful insights on how societies can prepare for future disease outbreaks,
highlighting the need for increased cooperation to avoid future pandemics.

PROOF OF PROPOSITION 1

For a complete proof, please consult this version of the paper .
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